Discrete models of physical-chemical processes
Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 33-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the investigation of discrete models of physical-chemical kinetic processes are presented in a systematic form. The models are extensions of the classical fon-Neumann Cellular Automaton (CA), differing from it in two points: 1) transition functions are allowed to be probabilistic, and 2) not only synchronous, but asynchronous and composed modes of functioning may be used. Mathematical background of the models is based on the formalisms of the “Parallel Substitution Algorithm”. Validity conditions and parallel implementation efficiency for synchronous and asynchronous CA-models are studied. All models are illustrated by the results of computer simulation of physical-chemical kinetics on micro- and nano-levels.
@article{PDM_2009_3_a4,
     author = {O. L. Bandman},
     title = {Discrete models of physical-chemical processes},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {33--49},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a4/}
}
TY  - JOUR
AU  - O. L. Bandman
TI  - Discrete models of physical-chemical processes
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 33
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_3_a4/
LA  - ru
ID  - PDM_2009_3_a4
ER  - 
%0 Journal Article
%A O. L. Bandman
%T Discrete models of physical-chemical processes
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 33-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_3_a4/
%G ru
%F PDM_2009_3_a4
O. L. Bandman. Discrete models of physical-chemical processes. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 33-49. http://geodesic.mathdoc.fr/item/PDM_2009_3_a4/

[1] Toffolli T., “Cellular Automata as an Alternative to (rather than Approximation of) Differential Equations in Modeling Physics”, Physica D, 10 (1984), 117–127 | DOI | MR

[2] Wolfram S., “Statistical mechanics of Cellular automata”, Rev. Mod. Phys., 55 (1993), 607–640 | MR

[3] Boon J. P., Dab D., Kapral R., Lawniczak A., “Lattice-Gas Automata for Reactive Systems”, Phys. Rep., 273 (1996), 55–147 | DOI | MR

[4] Bandman O. L., “Melkozernistyi parallelizm v vychislitelnoi matematike”, Programmirovanie, 2001, no. 4, 1–18 | MR

[5] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Metody i modeli sovremennogo programmirovaniya, Sb. nauchn. tr., Sistemnaya informatika, 10, Izd-vo SO RAN, Novosibirsk, 2006, 59–111

[6] Bandman O., “Synchronous versus asynchronous cellular automata for simulating nano-systems kinetics”, Bulletin of the Novosibirsk Computer Center. Series: Computer Science, 27, 2006, 1–12

[7] Rothman B. H., Zaleski S., Lattice-Gas Cellular Automata. Simple Models of Complex Hydrodynamics, Cambridge Univ. Press, London, 1997, 320 pp. | MR | Zbl

[8] Makeev A. G., “Coarse bifurcation analysis of kinetic Monte Carlo simulations: a lattice-gas model with lateral interactions”, J. Chem. Phys., 117:18 (2002), 8229–8240 | DOI

[9] Elokhin V. I., Latkin E. I., Matveev A. V., Gorodetskii V. V., “Application of Statistical Lattice Models to the Analysis of Oscillatory and Autowave Processes on the Reaction of Carbon Monoxide Oxidation over Platinum and Palladium Surfaces”, Kinet. Catal., 44:5 (2003), 672–700 | DOI

[10] Neizvestny I. G., Shwartz N. L., Yanovitskaya Z. Sh., Zverev A. V., “3D-model of epitaxial growth on porous $\{111\}$ and $\{100\}$ Si surfaces”, Comp. Phys. Commun., 147 (2002), 272–275 | DOI | Zbl

[11] Betz G., Husinsky W., “Surface erosion and film growth studied by a combined molecular dynamics and kinetic Monte Carlo code”, Izvestia of Russian Academy of Sciences. Phys. Ser., 66:4 (2002), 585–587

[12] Kovalev E. V., Resnyanskii E. D., Elokhin V. I., et al., “Novel statistical lattice model for the supported nanoparticle. Features of the reaction performance influenced by the dynamically changed shape and surfaces morphology of the supported active particle”, Phys. Chem. Chem. Phys., 5 (2003), 784–790 | DOI

[13] Alba E., Troya J. M., “Cellular Evolutionary Algorithms: evaluating the influence of ratio”, Lect. Not. Comp. Sci., 197, 2000, 29–38

[14] Malvanets A., Kapral R., “Microscopic model for Fitz-Nagumo dynamics”, Phys. Rev. E, 55:5 (1997), 5657–5670 | DOI

[15] Achasova S., Bandman O., Markova V., Piskunov S., Parallel Substitution Algorithm. Theory and Application, World Scientific, Singapore, 1994, 198 pp. | Zbl

[16] Bandman O., “Parallel Simulation of Asynchronous Cellular Automata Evolution”, Lect. Not. Comp. Sci., 4173, 2006, 41–48 | MR

[17] Bandman O. L., “Parallelnaya realizatsiya kletochno-avtomatnykh algoritmov modelirovaniya prostranstvennoi dinamiki”, Sibirskii zhurn. vychislitelnoi matematiki, 10:4 (2007), 335–348

[18] Wolfram S., A new kind of science, Wolfram Media Inc., Champaign, Ill., USA, 2002, 2000 pp. | MR | Zbl

[19] Toffolli T., Margolus N., Cellular Automata Machine, MIT Press, USA, 1987, 284 pp.

[20] Vichniac G., “Simulating Physics by Cellular Automata”, Phys. D, 10 (1984), 86–112 | DOI | MR

[21] Bandman O., “Comparative Study of Cellular automata Diffusion Models”, Lect. Not. Comp. Sci., 1662, 1999, 395–399

[22] Bandman O. L., “Metody kompozitsii kletochnykh avtomatov dlya modelirovaniya prostranstvennoi dinamiki”, Vestnik Tomskogo gosuniversiteta, 2002, no. 9(1), 188–192

[23] Ziff R. M., Gulari E., Bershad Y., “Kinetic phase transitions in irreversible surface-reaction model”, Phys. Rev. Lett., 56 (1986), 553–2558 | DOI