Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2009_3_a4, author = {O. L. Bandman}, title = {Discrete models of physical-chemical processes}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {33--49}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a4/} }
O. L. Bandman. Discrete models of physical-chemical processes. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 33-49. http://geodesic.mathdoc.fr/item/PDM_2009_3_a4/
[1] Toffolli T., “Cellular Automata as an Alternative to (rather than Approximation of) Differential Equations in Modeling Physics”, Physica D, 10 (1984), 117–127 | DOI | MR
[2] Wolfram S., “Statistical mechanics of Cellular automata”, Rev. Mod. Phys., 55 (1993), 607–640 | MR
[3] Boon J. P., Dab D., Kapral R., Lawniczak A., “Lattice-Gas Automata for Reactive Systems”, Phys. Rep., 273 (1996), 55–147 | DOI | MR
[4] Bandman O. L., “Melkozernistyi parallelizm v vychislitelnoi matematike”, Programmirovanie, 2001, no. 4, 1–18 | MR
[5] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Metody i modeli sovremennogo programmirovaniya, Sb. nauchn. tr., Sistemnaya informatika, 10, Izd-vo SO RAN, Novosibirsk, 2006, 59–111
[6] Bandman O., “Synchronous versus asynchronous cellular automata for simulating nano-systems kinetics”, Bulletin of the Novosibirsk Computer Center. Series: Computer Science, 27, 2006, 1–12
[7] Rothman B. H., Zaleski S., Lattice-Gas Cellular Automata. Simple Models of Complex Hydrodynamics, Cambridge Univ. Press, London, 1997, 320 pp. | MR | Zbl
[8] Makeev A. G., “Coarse bifurcation analysis of kinetic Monte Carlo simulations: a lattice-gas model with lateral interactions”, J. Chem. Phys., 117:18 (2002), 8229–8240 | DOI
[9] Elokhin V. I., Latkin E. I., Matveev A. V., Gorodetskii V. V., “Application of Statistical Lattice Models to the Analysis of Oscillatory and Autowave Processes on the Reaction of Carbon Monoxide Oxidation over Platinum and Palladium Surfaces”, Kinet. Catal., 44:5 (2003), 672–700 | DOI
[10] Neizvestny I. G., Shwartz N. L., Yanovitskaya Z. Sh., Zverev A. V., “3D-model of epitaxial growth on porous $\{111\}$ and $\{100\}$ Si surfaces”, Comp. Phys. Commun., 147 (2002), 272–275 | DOI | Zbl
[11] Betz G., Husinsky W., “Surface erosion and film growth studied by a combined molecular dynamics and kinetic Monte Carlo code”, Izvestia of Russian Academy of Sciences. Phys. Ser., 66:4 (2002), 585–587
[12] Kovalev E. V., Resnyanskii E. D., Elokhin V. I., et al., “Novel statistical lattice model for the supported nanoparticle. Features of the reaction performance influenced by the dynamically changed shape and surfaces morphology of the supported active particle”, Phys. Chem. Chem. Phys., 5 (2003), 784–790 | DOI
[13] Alba E., Troya J. M., “Cellular Evolutionary Algorithms: evaluating the influence of ratio”, Lect. Not. Comp. Sci., 197, 2000, 29–38
[14] Malvanets A., Kapral R., “Microscopic model for Fitz-Nagumo dynamics”, Phys. Rev. E, 55:5 (1997), 5657–5670 | DOI
[15] Achasova S., Bandman O., Markova V., Piskunov S., Parallel Substitution Algorithm. Theory and Application, World Scientific, Singapore, 1994, 198 pp. | Zbl
[16] Bandman O., “Parallel Simulation of Asynchronous Cellular Automata Evolution”, Lect. Not. Comp. Sci., 4173, 2006, 41–48 | MR
[17] Bandman O. L., “Parallelnaya realizatsiya kletochno-avtomatnykh algoritmov modelirovaniya prostranstvennoi dinamiki”, Sibirskii zhurn. vychislitelnoi matematiki, 10:4 (2007), 335–348
[18] Wolfram S., A new kind of science, Wolfram Media Inc., Champaign, Ill., USA, 2002, 2000 pp. | MR | Zbl
[19] Toffolli T., Margolus N., Cellular Automata Machine, MIT Press, USA, 1987, 284 pp.
[20] Vichniac G., “Simulating Physics by Cellular Automata”, Phys. D, 10 (1984), 86–112 | DOI | MR
[21] Bandman O., “Comparative Study of Cellular automata Diffusion Models”, Lect. Not. Comp. Sci., 1662, 1999, 395–399
[22] Bandman O. L., “Metody kompozitsii kletochnykh avtomatov dlya modelirovaniya prostranstvennoi dinamiki”, Vestnik Tomskogo gosuniversiteta, 2002, no. 9(1), 188–192
[23] Ziff R. M., Gulari E., Bershad Y., “Kinetic phase transitions in irreversible surface-reaction model”, Phys. Rev. Lett., 56 (1986), 553–2558 | DOI