Almost all Latin squares have trivial autoparatopy group
Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 29-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is: almost all Latin squares of order $n$ have trivial autoparatopy group as $n\to\infty$. As a consequence we obtain the asymptotic number of main classes of Latin squares of order $n$: $$ \frac{L_n}{6n!^3}(1+o(1)), $$ where $L_n$ – number of Latin squares of order $n$.
@article{PDM_2009_3_a3,
     author = {A. V. Cheremushkin},
     title = {Almost all {Latin} squares have trivial autoparatopy group},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {29--32},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a3/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Almost all Latin squares have trivial autoparatopy group
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 29
EP  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_3_a3/
LA  - ru
ID  - PDM_2009_3_a3
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Almost all Latin squares have trivial autoparatopy group
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 29-32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_3_a3/
%G ru
%F PDM_2009_3_a3
A. V. Cheremushkin. Almost all Latin squares have trivial autoparatopy group. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 29-32. http://geodesic.mathdoc.fr/item/PDM_2009_3_a3/

[1] McKay B. D., Meynet A., Myrvold W., “Small latin squares, quasigroups and loops”, J. Combin. Designs, 15:2 (2007), 98–119 ; http://cs.anu.edu.au/~bdm/papers/ls_final.pdf | DOI | MR | Zbl

[2] Cheremushkin A. V., “Pochti vse latinskie kvadraty imeyut trivialnuyu gruppu avtostrofii”, Materialy IX Mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya”, posvyaschennogo 75-letiyu so dnya rozhdeniya akademika O. B. Lupanova (Moskva, MGU, 18–23 iyunya 2007 g.), ed. O. M. Kasim-Zade, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 2007, 459–460

[3] Cheremushkin A. V., “Nekotorye asimptoticheskie otsenki dlya klassa silno zavisimykh funktsii”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2006, no. 17, 87–94

[4] Mink M., Permanenty, Mir, M., 1982 | MR