Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2009_3_a3, author = {A. V. Cheremushkin}, title = {Almost all {Latin} squares have trivial autoparatopy group}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {29--32}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a3/} }
A. V. Cheremushkin. Almost all Latin squares have trivial autoparatopy group. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 29-32. http://geodesic.mathdoc.fr/item/PDM_2009_3_a3/
[1] McKay B. D., Meynet A., Myrvold W., “Small latin squares, quasigroups and loops”, J. Combin. Designs, 15:2 (2007), 98–119 ; http://cs.anu.edu.au/~bdm/papers/ls_final.pdf | DOI | MR | Zbl
[2] Cheremushkin A. V., “Pochti vse latinskie kvadraty imeyut trivialnuyu gruppu avtostrofii”, Materialy IX Mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya”, posvyaschennogo 75-letiyu so dnya rozhdeniya akademika O. B. Lupanova (Moskva, MGU, 18–23 iyunya 2007 g.), ed. O. M. Kasim-Zade, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 2007, 459–460
[3] Cheremushkin A. V., “Nekotorye asimptoticheskie otsenki dlya klassa silno zavisimykh funktsii”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2006, no. 17, 87–94
[4] Mink M., Permanenty, Mir, M., 1982 | MR