Analitic approach to context-free languages in the Greibach normal form
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 73-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Context-free languages are considered as formal power series which are solutions of the polynomial equations systems with noncommutative multiplication of variables. It is suggested to investigate these systems in Greibach normal form that allows to research it more effectively. Commutative images of languages and defining systems are considered in complex domain.
@article{PDM_2009_10_a37,
     author = {O. I. Egorushkin and K. V. Safonov},
     title = {Analitic approach to context-free languages in the {Greibach} normal form},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {73--74},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a37/}
}
TY  - JOUR
AU  - O. I. Egorushkin
AU  - K. V. Safonov
TI  - Analitic approach to context-free languages in the Greibach normal form
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 73
EP  - 74
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a37/
LA  - ru
ID  - PDM_2009_10_a37
ER  - 
%0 Journal Article
%A O. I. Egorushkin
%A K. V. Safonov
%T Analitic approach to context-free languages in the Greibach normal form
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 73-74
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a37/
%G ru
%F PDM_2009_10_a37
O. I. Egorushkin; K. V. Safonov. Analitic approach to context-free languages in the Greibach normal form. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 73-74. http://geodesic.mathdoc.fr/item/PDM_2009_10_a37/