Minimal primitive extensions of oriented graphs
Prikladnaâ diskretnaâ matematika, no. 1 (2008), pp. 116-119
Voir la notice de l'article provenant de la source Math-Net.Ru
(Oriented) graph $G=(V,\alpha)$ is called primitive if there exists an integer $r\ge 1$ such that every two vertices can be connected by a route of length $r$. A graph $G'=(V,\alpha)$ is said to be a primitive extension of $G$ if $G'$ is primitive and $\alpha\subseteq\alpha'$. Primitive extensions with a minimal possible number of additional arcs are constructed for some acyclic graphs (trees, linear and polygonal graphs).
@article{PDM_2008_1_a18,
author = {V. N. Salii},
title = {Minimal primitive extensions of oriented graphs},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {116--119},
publisher = {mathdoc},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2008_1_a18/}
}
V. N. Salii. Minimal primitive extensions of oriented graphs. Prikladnaâ diskretnaâ matematika, no. 1 (2008), pp. 116-119. http://geodesic.mathdoc.fr/item/PDM_2008_1_a18/