Minimal primitive extensions of oriented graphs
Prikladnaâ diskretnaâ matematika, no. 1 (2008), pp. 116-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

(Oriented) graph $G=(V,\alpha)$ is called primitive if there exists an integer $r\ge 1$ such that every two vertices can be connected by a route of length $r$. A graph $G'=(V,\alpha)$ is said to be a primitive extension of $G$ if $G'$ is primitive and $\alpha\subseteq\alpha'$. Primitive extensions with a minimal possible number of additional arcs are constructed for some acyclic graphs (trees, linear and polygonal graphs).
@article{PDM_2008_1_a18,
     author = {V. N. Salii},
     title = {Minimal primitive extensions of oriented graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {116--119},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2008_1_a18/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - Minimal primitive extensions of oriented graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2008
SP  - 116
EP  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2008_1_a18/
LA  - ru
ID  - PDM_2008_1_a18
ER  - 
%0 Journal Article
%A V. N. Salii
%T Minimal primitive extensions of oriented graphs
%J Prikladnaâ diskretnaâ matematika
%D 2008
%P 116-119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2008_1_a18/
%G ru
%F PDM_2008_1_a18
V. N. Salii. Minimal primitive extensions of oriented graphs. Prikladnaâ diskretnaâ matematika, no. 1 (2008), pp. 116-119. http://geodesic.mathdoc.fr/item/PDM_2008_1_a18/