On the complexity of weakly positive and weakly negative boolean functions reducing
Prikladnaâ diskretnaâ matematika, no. 1 (2008), pp. 7-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boolean function $f(x_1,\dots,x_k)$ is called weakly positive (weakly negative) if $f$ may be represented by CNF such as $f\equiv\bigwedge\limits_{i=1}^t(x_{s_{i1}}^{\alpha_i}\lor x_{s_{i2}}\lor\dots\lor x_{s_{ik_i}})$, where $\alpha_i\in\{0,1\}$, $i=1,\dots,t$, (respectively by CNF such as $f\equiv\bigwedge\limits_{i=1}^t(\overline x_{s_{i1}}^{\alpha_i}\lor\overline x_{s_{i2}}\lor\dots\lor\overline x_{s_{ik_i}})$, where $\alpha_i\in\{0,1\}$, $i=1,\dots,t$). These formulas are called reduced representations of weakly positive and weakly negative functions accordingly. The complexity of reducing the weakly positive and weakly negative functions represented by perfect CNF or algebraic normal form is evaluated in this paper.
@article{PDM_2008_1_a1,
     author = {S. P. Gorshkov},
     title = {On the complexity of weakly positive and weakly negative boolean functions reducing},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {7--9},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2008_1_a1/}
}
TY  - JOUR
AU  - S. P. Gorshkov
TI  - On the complexity of weakly positive and weakly negative boolean functions reducing
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2008
SP  - 7
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2008_1_a1/
LA  - ru
ID  - PDM_2008_1_a1
ER  - 
%0 Journal Article
%A S. P. Gorshkov
%T On the complexity of weakly positive and weakly negative boolean functions reducing
%J Prikladnaâ diskretnaâ matematika
%D 2008
%P 7-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2008_1_a1/
%G ru
%F PDM_2008_1_a1
S. P. Gorshkov. On the complexity of weakly positive and weakly negative boolean functions reducing. Prikladnaâ diskretnaâ matematika, no. 1 (2008), pp. 7-9. http://geodesic.mathdoc.fr/item/PDM_2008_1_a1/