On the construction of invertible vector Boolean functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 40-44

Voir la notice de l'article provenant de la source Math-Net.Ru

The following construction of a vector Boolean function is considered: $G(x)=\big(f(x),f(\pi(x)),f(\pi^2(x)),\ldots,f(\pi^{n-1}(x))\big)$, where $\pi(i)=i\bmod n+1$, $f$ is a $n$-dimensional Boolean function. An algorithm for constructing such a function with the invertibility property has been proposed; its completeness and correctness have been proven; the number $t(n)$ of invertible functions of type $G$ has been calculated: $t(n)=\prod\limits_{d|n}p(d)! d^{p(d)}$, where $p(d)$ is the number of binary Lyndon words of length $d$. If $\pi$ is an arbitrary full-cycle substitution (not necessarily a cyclic shift), then the number of invertible functions of type $G$ is $(n-1)!$ times greater.
Keywords: vector Boolean functions, invertible functions, cyclically equivalent vectors, Lyndon words.
@article{PDMA_2024_17_a9,
     author = {I. A. Pankratova and P. R. Garchukova},
     title = {On the construction of invertible vector {Boolean} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {40--44},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a9/}
}
TY  - JOUR
AU  - I. A. Pankratova
AU  - P. R. Garchukova
TI  - On the construction of invertible vector Boolean functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 40
EP  - 44
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a9/
LA  - ru
ID  - PDMA_2024_17_a9
ER  - 
%0 Journal Article
%A I. A. Pankratova
%A P. R. Garchukova
%T On the construction of invertible vector Boolean functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 40-44
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a9/
%G ru
%F PDMA_2024_17_a9
I. A. Pankratova; P. R. Garchukova. On the construction of invertible vector Boolean functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 40-44. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a9/