Characterization of generalized bent functions of algebraic degree $1$
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 37-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Bent functions of the form $\mathbb{F}_2^n\rightarrow\mathbb{Z}_q$, where $q\geqslant2$ is a positive integer, are known as generalized bent (gbent) functions. A gbent function for which it is possible to define a dual gbent function is called regular. We study gbent functions of degree $1$. Criterion of the generalized Boolean function of degree $1$ to be gbent is obtained. The conditions under which the function is regular or weakly regular are described. Component Boolean functions are investigated, it follows that for the case $q=2^k$ two of them, having maximal indices, are quadratic, while the rest are constant.
Keywords: generalized bent function, regular gbent function, affine function, component Boolean function.
@article{PDMA_2024_17_a8,
     author = {A. V. Kutsenko},
     title = {Characterization of generalized bent functions of algebraic degree $1$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {37--40},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a8/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - Characterization of generalized bent functions of algebraic degree $1$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 37
EP  - 40
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a8/
LA  - ru
ID  - PDMA_2024_17_a8
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T Characterization of generalized bent functions of algebraic degree $1$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 37-40
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a8/
%G ru
%F PDMA_2024_17_a8
A. V. Kutsenko. Characterization of generalized bent functions of algebraic degree $1$. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 37-40. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a8/