Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2024_17_a7, author = {N. A. Kolomeets}, title = {On the number of functions that break subspaces of dimension $3$ and higher}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {34--37}, publisher = {mathdoc}, number = {17}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a7/} }
N. A. Kolomeets. On the number of functions that break subspaces of dimension $3$ and higher. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 34-37. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a7/
[1] Clark W. E., Hou X., Mihailovs A., “The affinity of a permutation of a finite vector space”, Finite Fields Their Appl., 13 (2007), 80–112 | DOI | MR | Zbl
[2] Nyberg K., “Differentially uniform mappings for cryptography”, LNCS, 765, 1994, 245–265 | MR
[3] Carlet S., “Open questions on nonlinearity and on APN functions”, LNCS, 9061, 2015, 83–107 | MR | Zbl
[4] Kolomeec N., Bykov D., “On the image of an affine subspace under the inverse function within a finite field”, Des. Codes Cryptogr., 92 (2024), 467–476 | DOI | MR
[5] Kolomeets N. A., “O sokhranenii struktury podprostranstv vektornymi bulevymi funktsiyami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2023, no. 16, 23–26
[6] Leander G., Abdelraheem M. A., AlKhzaimi H., Zenner E., “A cryptanalysis of PRINTcipher: The invariant subspace attack”, LNCS, 6841, 2011, 206–221 | MR | Zbl
[7] Todo Y., Leander G., and Sasaki Y., “Nonlinear invariant attack: practical attack on full SCREAM, iSCREAM, and Midori64”, LNCS, 10032, 2016, 3–33 | MR | Zbl
[8] Trifonov D. I., Fomin D. B., “Ob invariantnykh podprostranstvakh v XSL-shifrakh”, Prikladnaya diskretnaya matematika, 2021, no. 54, 58–76 | Zbl
[9] Burov D. A., “O suschestvovanii nelineinykh invariantov spetsialnogo vida dlya raundovykh preobrazovanii XSL-algoritmov”, Diskretnaya matematika, 33:2 (2021), 31–45 | DOI | MR