On the number of functions that break subspaces of dimension $3$ and higher
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 34-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sets $\mathcal{P}_{n}^{k}$ consisting of invertible functions $F: \mathbb{F}_2^{n} \to \mathbb{F}_2^{n}$ such that any $U \subseteq \mathbb{F}_2^{n}$ and its image $F(U)$ are not simultaneously $k$-dimensional affine subspaces of $\mathbb{F}_2^{n}$, where $3 \leq k \leq n - 1$. We present lower bounds for the cardinalities of all such $\mathcal{P}_{n}^{k}$ and $\mathcal{P}_{n}^{k} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$ that improve the result of W. E. Clark et al., 2007 providing that these sets are not empty. We prove that almost all permutations of $\mathbb{F}_2^{n}$ belong to $\mathcal{P}_{n}^{4} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$. Asymptotic lower and upper bounds of $|\mathcal{P}_{n}^{3}|$ and $|\mathcal{P}_{n}^{3} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}|$ up to $o(2^n!)$ are obtained as well. The number of functions from $\mathcal{P}_{n}^{4} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$ that map exactly one $3$-dimensional affine subspace of $\mathbb{F}_2^{n}$ to an affine subspace is estimated.
Keywords: affine subspaces, invariant subspaces, asymptotic bounds.
Mots-clés : permutations
@article{PDMA_2024_17_a7,
     author = {N. A. Kolomeets},
     title = {On the number of functions that break subspaces of dimension $3$ and higher},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {34--37},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a7/}
}
TY  - JOUR
AU  - N. A. Kolomeets
TI  - On the number of functions that break subspaces of dimension $3$ and higher
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 34
EP  - 37
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a7/
LA  - ru
ID  - PDMA_2024_17_a7
ER  - 
%0 Journal Article
%A N. A. Kolomeets
%T On the number of functions that break subspaces of dimension $3$ and higher
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 34-37
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a7/
%G ru
%F PDMA_2024_17_a7
N. A. Kolomeets. On the number of functions that break subspaces of dimension $3$ and higher. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 34-37. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a7/