Research of boomerang uniformity of quadratic permutations
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boomerang attack, proposed in 1999, is a variation of the difference attack. Its advantage is that even in the presence of low differential uniformity the cipher can still be vulnerable to boomerang attack. This paper is devoted to such a parameter of a vector Boolean function as boomerang uniformity, which characterizes the function's resistance to the boomerang attack. Quadratic permutations are considered and the dependence of the boomerang characteristic on the differential characteristic for this class has been studied. The main result is an expression connecting the boomerang uniformity of a function with the values of its DDT table and obtained using the matrix approach for working with quadratic functions, as well as the known properties of differential and boomerang characteristics In addition, for the boomerang characteristic, some constructions of quadratic substitutions in a small number of variables have been studied and other properties have been established.
Keywords: vector Boolean function, quadratic permutation, differential uniformity, APN-function, boomerang attack, boomerang uniformity
Mots-clés : DDT-table, BCT-table.
@article{PDMA_2024_17_a6,
     author = {Y. S. Kalinin},
     title = {Research of boomerang uniformity of quadratic permutations},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {28--34},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a6/}
}
TY  - JOUR
AU  - Y. S. Kalinin
TI  - Research of boomerang uniformity of quadratic permutations
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 28
EP  - 34
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a6/
LA  - ru
ID  - PDMA_2024_17_a6
ER  - 
%0 Journal Article
%A Y. S. Kalinin
%T Research of boomerang uniformity of quadratic permutations
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 28-34
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a6/
%G ru
%F PDMA_2024_17_a6
Y. S. Kalinin. Research of boomerang uniformity of quadratic permutations. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 28-34. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a6/

[1] Wagner D., “The boomerang attack”, LNCS, 1636, 1999, 156–170 | Zbl

[2] Biham E., Dunkelman O., and Keller N., “A related-key rectangle attack on the full KASUMI”, LNCS, 3788, 2005, 443–461 | MR | Zbl

[3] Biryukov A., “The boomerang attack on 5 and 6-round reduced AES”, LNSC, 3373 (2004), 11–15

[4] Joux A. and Peyrin T., “Hash functions and the (amplified) boomerang attack”, LNCS, 4622, 2007, 244–263 | MR | Zbl

[5] Pudovkina M. A., Smirnov A. M., “Analiz metodom bumeranga 4-raundovogo algoritma shifrovaniya LILLIPUT-TBC-II-256”, Prikladnaya diskretnaya matematika. Prilozhenie, 2023, no. 16, 81–84

[6] Nyberg K., “Diferentially uniform mappings for cryptography”, LNCS, 765, 1994, 55–64 | MR | Zbl

[7] Li K., Qu L., Sun B., Li C., “New results about the boomerang uniformity of permutation polynomials”, IEEE Trans. Inform. Theory, 65 (2019), 7542–7553 | DOI | MR | Zbl

[8] Boura C. and Canteaut A., “On the boomerang uniformity of cryptographic S-boxes”, IACR Trans. Symmetric Cryptology, 2018, no. 3, 290–310 | DOI | MR

[9] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matem. vopr. kriptogr., 2016, no. 7, 29–50 | DOI | MR | Zbl

[10] Gorodilova A. A., “Kharakterizatsiya pochti sovershenno nelineinykh funktsii cherez podfunktsii”, Diskretnaya matematika, 27:3 (2015), 3–16 | DOI

[11] Gorodilova A. A., “A note on the properies of associated Boolean functions of quadratic APN functions”, Prikladnaya diskretnaya matematika, 2020, no. 47, 16–21 | MR | Zbl

[12] Idrisova V. A., “O postroenii APN-perestanovok s pomoschyu podfunktsii”, Prikladnaya diskretnaya matematika, 2018, no. 41, 17–27 | MR | Zbl

[13] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3(5), 14–20

[14] Browning K., Dillon J., McQuistan M., Wolfe A., “An APN permutation in dimension six”, Finite Fields: Theory and Appl., 518 (2010), 33–42 | DOI | MR | Zbl

[15] Budaghyan L., Calderini M., Carlet C., et al., “On two fundamental problems on APN power functions”, IEEE Trans. Inform. Theory, 68 (2022), 3389–3403 | DOI | MR | Zbl

[16] Budaghyan L., Carlet C., Helleseth T., Kaleyski N., “On the distance between APN functions”, IEEE Trans. Inform. Theory, 66 (2020), 5742–5753 | DOI | MR | Zbl

[17] Yu Y., Wang M., Li Y., “A matrix approach for constructing quadratic APN functions”, Des. Codes Cryptogr., 73 (2014), 587–600 | DOI | MR | Zbl

[18] Cid C., Huang T., Peyrin T., et al., “Boomerang connectivity table: a new cryptanalysis tool”, LNCS, 10821, 2018, 683–714 | MR | Zbl

[19] Mesnager S., Mandal B., Msahli M., “Survey on recent trends towards generalized differential and boomerang uniformities”, Cryptogr. Commun., 14 (2022), 691–735 | DOI | MR | Zbl

[20] Garg K., Hasan S., Stănică P., “Boomerang uniformity of some classes of functions over finite fields”, Discret. Appl. Math., 343 (2024), 166–179 | DOI | MR | Zbl

[21] Stănică P., “Using double Weil sums in finding the c—boomerang connectivity table for monomial functions on finite fields”, Appl. Algebra Eng. Commun. Comput., 34 (2023), 581–602 | DOI | MR

[22] Kim K., Mesnager S., Choe J., Lee D., “On permutation quadrinomials with boomerang unifomity 4 and the best-known nonlinearity”, Des. Codes Cryptogr., 90 (2022), 1437–1461 | DOI | MR | Zbl

[23] Mesnager S., Tang C., Xiong M., “On the boomerang uniformity of quadratic permutations”, Des. Codes Cryptogr., 88 (2020), 2233–2246 | DOI | MR | Zbl

[24] Tu Z., Li N., Zeng X., Zhou J., “A class of quadrinomial permutations with boomerang uniformity four”, IEEE Trans. Inform. Theory, 66 (2020), 3753–3765 | DOI | MR | Zbl

[25] Boz̆ilov D., Bilgin B., and Sahin H. A., “A note on 5-bit quadratic permutations classification”, IACR Trans. Symmetric Cryptology, 2017, no. 1, 398–404

[26] Miloserdov A. V., “Vzaimno odnoznachnye binomialnye funktsii nad konechnymi polyami”, Diskretn. analiz issled. oper., 2018, no. 4, 59–80 | MR | Zbl

[27] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2020 | MR