Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2024_17_a6, author = {Y. S. Kalinin}, title = {Research of boomerang uniformity of quadratic permutations}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {28--34}, publisher = {mathdoc}, number = {17}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a6/} }
Y. S. Kalinin. Research of boomerang uniformity of quadratic permutations. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 28-34. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a6/
[1] Wagner D., “The boomerang attack”, LNCS, 1636, 1999, 156–170 | Zbl
[2] Biham E., Dunkelman O., and Keller N., “A related-key rectangle attack on the full KASUMI”, LNCS, 3788, 2005, 443–461 | MR | Zbl
[3] Biryukov A., “The boomerang attack on 5 and 6-round reduced AES”, LNSC, 3373 (2004), 11–15
[4] Joux A. and Peyrin T., “Hash functions and the (amplified) boomerang attack”, LNCS, 4622, 2007, 244–263 | MR | Zbl
[5] Pudovkina M. A., Smirnov A. M., “Analiz metodom bumeranga 4-raundovogo algoritma shifrovaniya LILLIPUT-TBC-II-256”, Prikladnaya diskretnaya matematika. Prilozhenie, 2023, no. 16, 81–84
[6] Nyberg K., “Diferentially uniform mappings for cryptography”, LNCS, 765, 1994, 55–64 | MR | Zbl
[7] Li K., Qu L., Sun B., Li C., “New results about the boomerang uniformity of permutation polynomials”, IEEE Trans. Inform. Theory, 65 (2019), 7542–7553 | DOI | MR | Zbl
[8] Boura C. and Canteaut A., “On the boomerang uniformity of cryptographic S-boxes”, IACR Trans. Symmetric Cryptology, 2018, no. 3, 290–310 | DOI | MR
[9] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matem. vopr. kriptogr., 2016, no. 7, 29–50 | DOI | MR | Zbl
[10] Gorodilova A. A., “Kharakterizatsiya pochti sovershenno nelineinykh funktsii cherez podfunktsii”, Diskretnaya matematika, 27:3 (2015), 3–16 | DOI
[11] Gorodilova A. A., “A note on the properies of associated Boolean functions of quadratic APN functions”, Prikladnaya diskretnaya matematika, 2020, no. 47, 16–21 | MR | Zbl
[12] Idrisova V. A., “O postroenii APN-perestanovok s pomoschyu podfunktsii”, Prikladnaya diskretnaya matematika, 2018, no. 41, 17–27 | MR | Zbl
[13] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3(5), 14–20
[14] Browning K., Dillon J., McQuistan M., Wolfe A., “An APN permutation in dimension six”, Finite Fields: Theory and Appl., 518 (2010), 33–42 | DOI | MR | Zbl
[15] Budaghyan L., Calderini M., Carlet C., et al., “On two fundamental problems on APN power functions”, IEEE Trans. Inform. Theory, 68 (2022), 3389–3403 | DOI | MR | Zbl
[16] Budaghyan L., Carlet C., Helleseth T., Kaleyski N., “On the distance between APN functions”, IEEE Trans. Inform. Theory, 66 (2020), 5742–5753 | DOI | MR | Zbl
[17] Yu Y., Wang M., Li Y., “A matrix approach for constructing quadratic APN functions”, Des. Codes Cryptogr., 73 (2014), 587–600 | DOI | MR | Zbl
[18] Cid C., Huang T., Peyrin T., et al., “Boomerang connectivity table: a new cryptanalysis tool”, LNCS, 10821, 2018, 683–714 | MR | Zbl
[19] Mesnager S., Mandal B., Msahli M., “Survey on recent trends towards generalized differential and boomerang uniformities”, Cryptogr. Commun., 14 (2022), 691–735 | DOI | MR | Zbl
[20] Garg K., Hasan S., Stănică P., “Boomerang uniformity of some classes of functions over finite fields”, Discret. Appl. Math., 343 (2024), 166–179 | DOI | MR | Zbl
[21] Stănică P., “Using double Weil sums in finding the c—boomerang connectivity table for monomial functions on finite fields”, Appl. Algebra Eng. Commun. Comput., 34 (2023), 581–602 | DOI | MR
[22] Kim K., Mesnager S., Choe J., Lee D., “On permutation quadrinomials with boomerang unifomity 4 and the best-known nonlinearity”, Des. Codes Cryptogr., 90 (2022), 1437–1461 | DOI | MR | Zbl
[23] Mesnager S., Tang C., Xiong M., “On the boomerang uniformity of quadratic permutations”, Des. Codes Cryptogr., 88 (2020), 2233–2246 | DOI | MR | Zbl
[24] Tu Z., Li N., Zeng X., Zhou J., “A class of quadrinomial permutations with boomerang uniformity four”, IEEE Trans. Inform. Theory, 66 (2020), 3753–3765 | DOI | MR | Zbl
[25] Boz̆ilov D., Bilgin B., and Sahin H. A., “A note on 5-bit quadratic permutations classification”, IACR Trans. Symmetric Cryptology, 2017, no. 1, 398–404
[26] Miloserdov A. V., “Vzaimno odnoznachnye binomialnye funktsii nad konechnymi polyami”, Diskretn. analiz issled. oper., 2018, no. 4, 59–80 | MR | Zbl
[27] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2020 | MR