On the number of the closest bent functions to some Maiorana--McFarland bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 24-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the numbers of bent functions that are closest to some bent functions from the Maiorana — McFarland class $\mathcal{M}_{2n}$, specifically, the numbers near to their lower $\mathcal{l}_{2n} = 2^{2n + 1} - 2^n$ and tight upper $\mathcal{L}_{2n}$ bounds. For a bent function $f(x, y) = \langle x, \sigma(y)\rangle \oplus \varphi(y) \in \mathcal{M}_{2n}$, where $\sigma$ is a function based on the inverse function of elements of the finite field, the number of closest bent functions is calculated for identically zero $\varphi$. Moreover, it is shown that this number is less than $\mathcal{l}_{2n} + 82(2^n - 1)$ and asymptotically equals to $\mathcal{l}_{2n} + o(\mathcal{l}_{2n})$ for some $\varphi$. An explicit formula for the number of bent functions closest to $f(x, y) = \langle x, y\rangle \oplus y_1 y_2 \dots y_m$, where $3 \leq m \leq n$, has been derived. The values for $m = 3$ and $m = n$ are equal to $o(\mathcal{L}_{2n})$ and $\dfrac{1}{3}\mathcal{L}_{2n} + o(\mathcal{L}_{2n})$ respectively as $n \to \infty$. A complete classification of $\mathcal{M}_6$ using the number of closest bent functions is obtained.
Keywords: affine subspaces, bent functions, Maiorana — McFarland class, minimal distance, the closest functions.
@article{PDMA_2024_17_a5,
     author = {D. A. Bykov and N. A. Kolomeets},
     title = {On the number of the closest bent functions to some {Maiorana--McFarland} bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {24--27},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a5/}
}
TY  - JOUR
AU  - D. A. Bykov
AU  - N. A. Kolomeets
TI  - On the number of the closest bent functions to some Maiorana--McFarland bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 24
EP  - 27
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a5/
LA  - ru
ID  - PDMA_2024_17_a5
ER  - 
%0 Journal Article
%A D. A. Bykov
%A N. A. Kolomeets
%T On the number of the closest bent functions to some Maiorana--McFarland bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 24-27
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a5/
%G ru
%F PDMA_2024_17_a5
D. A. Bykov; N. A. Kolomeets. On the number of the closest bent functions to some Maiorana--McFarland bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 24-27. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a5/

[1] Tokareva N., Bent Functions: Results and Applications to Cryptography, Academic Press, 2015 | MR | Zbl

[2] Rothaus O., “On “bent” functions”, J. Comb. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[3] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combinat. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[4] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4(6), 5–20

[5] Kolomeets N. A., “Perechislenie bent-funktsii na minimalnom rasstoyanii ot kvadratichnoi bent-funktsii”, Diskretn. analiz i issled. oper., 19:1 (2012), 41–58 | MR | Zbl

[6] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3(25), 28–39

[7] Bykov D. A., Kolomeets N. A., “O nizhnei otsenke chisla bent-funktsii na minimalnom rasstoyanii ot bent-funktsii iz klassa Meiorana — Makfarlanda”, Diskretn. analiz i issled. oper., 30:3 (2023), 57–80

[8] Bykov D. A., “O dostizhimosti nizhnei otsenki chisla bent-funktsii na minimalnom rasstoyanii ot bent-funktsii iz klassa Meiorana — MakFarlanda”, Prikladnaya diskretnaya matematika. Prilozhenie, 2023, no. 16, 14–18

[9] Nyberg K., “Differentially uniform mappings for cryptography”, LNCS, 765 (1994), 245–265 | MR

[10] Cheremushkin A. V., “Metody affinnoi i lineinoi klassifikatsii dvoichnykh funktsii”, Tr. po diskr. matem., 4 (2001), 273–314