Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2024_17_a40, author = {A. O. Bakharev}, title = {Research of $k$-sieve algorithm for solving the shortest vector problem in a lattice}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {157--162}, publisher = {mathdoc}, number = {17}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a40/} }
TY - JOUR AU - A. O. Bakharev TI - Research of $k$-sieve algorithm for solving the shortest vector problem in a lattice JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2024 SP - 157 EP - 162 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a40/ LA - ru ID - PDMA_2024_17_a40 ER -
A. O. Bakharev. Research of $k$-sieve algorithm for solving the shortest vector problem in a lattice. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 157-162. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a40/
[1] Kannan R., “Improved algorithms for integer programming and related lattice problems”, Proc. 15th Ann. ACM Symp. Theory Comput. (Boston, Massachusetts, USA, April 25–27, 1983), ACM, N.Y., 1983, 193–206
[2] Fincke U. and Pohst M., “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis”, Math. Comput., 44:170 (1985), 463–471 | DOI | MR | Zbl
[3] Ajtai M., Kumar R., and Sivakumar D., “A sieve algorithm for the shortest lattice vector problem”, Proc. 33rd Ann. ACM Symp. Theory Comput. (Hersonissos, Greece, July 6–8, 2001), ACM, N.Y., 2001, 601–610 | MR | Zbl
[4] Nguyen P. Q. and Vidick T., “Sieve algorithms for the shortest vector problem are practical”, J. Math. Cryptol., 2:2 (2008), 181–207 | DOI | MR | Zbl
[5] Bai S., Laarhoven T., Stehlé D., “Tuple lattice sieving”, LMS J. Comput. Math., 19:A (2016), 146–162 | DOI | MR
[6] Herold G. and Kirshanova E., “Improved algorithms for the approximate $k$-list problem in Euclidean norm”, LNCS, 10174, 2017, 16–40 | MR | Zbl
[7] Becker A., Ducas L., Gama G., and Laarhoven T., “New directions in nearest neighbor searching with applications to lattice sieving”, Proc. 27th Ann. ACM-SIAM Symp. Discrete Algorithms (Arlington, VA, USA, Jan. 10–12, 2016), SIAM, Philadelphia, PA, 2016, 10–24 | DOI | MR | Zbl
[8] Chailloux A. and Loyer J., “Classical and quantum 3 and 4-sieves to solve SVP with low memory”, LNCS, 14154, 2023, 225–255 | MR | Zbl
[9] Laarhoven T., Search Problems in Cryptography, From Fingerprinting to Lattice Sieving, Ph.D. Thesis, Eindhoven University of Technology, 2016
[10] Herold G., Kirshanova E., Laarhoven T., “Speed-ups and time–memory trade-offs for tuple lattice sieving”, LNCS, 10769, 2018, 407–436 | MR | Zbl
[11] Ajtai M., “The shortest vector problem in $L_2$ is NP-hard for randomized reductions (extended abstract)”, Proc. 30th Ann. ACM Symp. Theory Comput. (Dallas, Texas, USA, May 24–26, 1998), ACM, N.Y., 1998, 10–19 | Zbl
[12] Klein P., “Finding the closest lattice vector when it's unusually close”, Proc. 11th Ann. ACM-SIAM Symp. Discrete Algorithms (San Francisco, California, USA, Jan. 9–11, 2000), SIAM, Philadelphia, PA, 2000, 937–941 | MR | Zbl