On codes with unique decoding to the nearest
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 138-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problem No. 7 of the NSUCRYPTO 2023 Olympiad on the description of an interesting class of codes: with unique decoding to the nearest codeword in the Hamming metric. The possibility of representing the code $C$ as a matroid is proved and an intermediate solution is given in the case when a set of bits $B$ such that there is a two-bit word containing it that is decoded not at $z = 0$ coincides with all positions of the code bits.
Mots-clés : NSUCRYPTO, code
Keywords: Hamming weight, matroid.
@article{PDMA_2024_17_a34,
     author = {D. S. Ananichev and K. L. Geut and S. S. Titov},
     title = {On codes with unique decoding to the nearest},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {138--140},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/}
}
TY  - JOUR
AU  - D. S. Ananichev
AU  - K. L. Geut
AU  - S. S. Titov
TI  - On codes with unique decoding to the nearest
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 138
EP  - 140
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/
LA  - ru
ID  - PDMA_2024_17_a34
ER  - 
%0 Journal Article
%A D. S. Ananichev
%A K. L. Geut
%A S. S. Titov
%T On codes with unique decoding to the nearest
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 138-140
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/
%G ru
%F PDMA_2024_17_a34
D. S. Ananichev; K. L. Geut; S. S. Titov. On codes with unique decoding to the nearest. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 138-140. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/

[1] nsucrypto.nsu.ru

[2] Kovalevskaya D. I., O vlozhimosti sistem Shteinera v sovershennye kody, avtoref. dis. \ldots kand. fiz.-mat. nauk, Novosibirsk, 2013

[3] Geut K. L., Titov S. S., “Ortomorfizmy lineinykh troek Shteinera”, Matematicheskoe modelirovanie i informatsionnye tekhnologii pri reshenii prikladnykh zadach v transportnom vuze, 2021, no. 1(241), 131–137

[4] Wilson R. J., “An introduction to matroid theory”, Amer. Math. Monthly, 80:5 (1973), 500–525 | DOI | MR | Zbl

[5] Whitney H., “On the abstract properties of linear dependence”, Amer. J. Math., 57 (1935), 509–533 | DOI | MR | Zbl

[6] Rado R. A., “A theorem on independence relations”, Quart. J. Math. Oxford, 1942, no. 13, 3–89 | MR

[7] Edmonds J., “Matroids and the greedy algorithms”, Math. Programming, 1 (1971), 127–136 | DOI | MR | Zbl

[8] Yaschenko V. V., Vvedenie v kriptografiyu, MTsNMO, M., 2012

[9] White N., Theory of Matroids, Cambridge University Press, Cambridge, 1986, 316 pp. | MR | Zbl

[10] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, NITs «RKhD», Izhevsk, 2001