Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2024_17_a34, author = {D. S. Ananichev and K. L. Geut and S. S. Titov}, title = {On codes with unique decoding to the nearest}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {138--140}, publisher = {mathdoc}, number = {17}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/} }
TY - JOUR AU - D. S. Ananichev AU - K. L. Geut AU - S. S. Titov TI - On codes with unique decoding to the nearest JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2024 SP - 138 EP - 140 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/ LA - ru ID - PDMA_2024_17_a34 ER -
D. S. Ananichev; K. L. Geut; S. S. Titov. On codes with unique decoding to the nearest. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 138-140. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a34/
[1] nsucrypto.nsu.ru
[2] Kovalevskaya D. I., O vlozhimosti sistem Shteinera v sovershennye kody, avtoref. dis. \ldots kand. fiz.-mat. nauk, Novosibirsk, 2013
[3] Geut K. L., Titov S. S., “Ortomorfizmy lineinykh troek Shteinera”, Matematicheskoe modelirovanie i informatsionnye tekhnologii pri reshenii prikladnykh zadach v transportnom vuze, 2021, no. 1(241), 131–137
[4] Wilson R. J., “An introduction to matroid theory”, Amer. Math. Monthly, 80:5 (1973), 500–525 | DOI | MR | Zbl
[5] Whitney H., “On the abstract properties of linear dependence”, Amer. J. Math., 57 (1935), 509–533 | DOI | MR | Zbl
[6] Rado R. A., “A theorem on independence relations”, Quart. J. Math. Oxford, 1942, no. 13, 3–89 | MR
[7] Edmonds J., “Matroids and the greedy algorithms”, Math. Programming, 1 (1971), 127–136 | DOI | MR | Zbl
[8] Yaschenko V. V., Vvedenie v kriptografiyu, MTsNMO, M., 2012
[9] White N., Theory of Matroids, Cambridge University Press, Cambridge, 1986, 316 pp. | MR | Zbl
[10] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, NITs «RKhD», Izhevsk, 2001