Application of finite dynamic systems for information security
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 125-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Graph models occupy an important place in problems related to information security. Finite dynamic system $(\Gamma_G, \alpha)$ is considered, the states of which are all possible orientations of a given graph $G$, and the evolutionary function $\alpha$ transforms a given state $\overrightarrow{G}$ by reversing all arcs in $\overrightarrow{G}$ that go into sinks, and there are no other differences between the given $\overrightarrow{G}$ and the next $\alpha(\overrightarrow{G})$ states. The paper suggests how this system can be used for information security, namely: as a model for ensuring audit and monitoring the state of an object under the influence of threats to its information security, and investigating information security incidents in automated information systems, as a model for managing the continuous operation of systems and system recovery, countering denials of service, as a technology for identifying and authenticating users and subjects of information processes, and an access control system.
Keywords: attractor, authentication, graph, incident, cybersecurity, finite dynamic system, fault-tolerance, evolutionary function.
Mots-clés : identification
@article{PDMA_2024_17_a30,
     author = {A. V. Zharkova},
     title = {Application of finite dynamic systems for information security},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {125--129},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a30/}
}
TY  - JOUR
AU  - A. V. Zharkova
TI  - Application of finite dynamic systems for information security
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 125
EP  - 129
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a30/
LA  - ru
ID  - PDMA_2024_17_a30
ER  - 
%0 Journal Article
%A A. V. Zharkova
%T Application of finite dynamic systems for information security
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 125-129
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a30/
%G ru
%F PDMA_2024_17_a30
A. V. Zharkova. Application of finite dynamic systems for information security. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 125-129. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a30/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997 | MR

[2] Barbosa V. C., An Atlas of Edge-Reversal Dynamics, Chapman/CRC, London, 2001 | MR | Zbl

[3] Zharkova A. V., “O konechnoi dinamicheskoi sisteme vsekh vozmozhnykh orientatsii dannogo grafa so vsemi dostizhimymi i s nedostizhimymi sostoyaniyami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2022, no. 15, 105–107

[4] GOST R ISO/MEK 15408-1-2012. Natsionalnyi standart Rossiiskoi Federatsii. Informatsionnaya tekhnologiya. Metody i sredstva obespecheniya bezopasnosti. Kriterii otsenki bezopasnosti informatsionnykh tekhnologii. Ch. 1. Vvedenie i obschaya model, Standartinform, M., 2014

[5] GOST R 58833-2020. Natsionalnyi standart Rossiiskoi Federatsii. Zaschita informatsii. Identifikatsiya i autentifikatsiya. Obschie polozheniya, Standartinform, M., 2020

[6] GOST R 59383-2021. Natsionalnyi standart Rossiiskoi Federatsii. Informatsionnye tekhnologii. Metody i sredstva obespecheniya bezopasnosti. Osnovy upravleniya dostupom, Standartinform, M., 2021

[7] Grusho A. A., Primenko E. A., Timonina E. E., Teoreticheskie osnovy kompyuternoi bezopasnosti, Izd. tsentr «Akademiya», M., 2009

[8] Devyanin P. N., Modeli bezopasnosti kompyuternykh sistem. Upravlenie dostupom i informatsionnymi potokami, Goryachaya liniya-Telekom, M., 2013