On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 16-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V_n (2^m)$ be an $n$-dimensional vector space over $\mathbb{F}_{2^{m}}$ and ${\overline{V}}_n^l(2^m)$ consists of all pairwise different elements from the Cartesian product $V_n^l(2^m)$, $l,n,m \in \mathbb{N}$, $n,l \geq 2$. We consider permutations from the symmetrical group $S(V_n (2^m))$ acting coordinate-wise on vectors from $V_n^l(2^m)$, and partitions of ${\overline{V}}_n^l(2^m)$, which are generalizations of classical differential partitions ($l = 2$) and are used in high order differential, truncated differential, impossible differential, polytopic and multiple differential techniques. For a partition ${\mathbf{W}}^{(n,l)}$ of ${\overline{V}}_n^l(2^m)$, we study the minimum Hamming distance $\text{d}_{{\mathbf{W}}^{(n,l)}}(s)$ between a permutation $s$ and the set $\mathrm{IG}_{\mathbf{W}}$ consisting of all permutations from $S(V_n (2^m))$ preserving ${\mathbf{W}}^{(n,l)}$. We describe properties of permutations $s$ with the maximum distance $\text{d}_{{\mathbf{W}}^{(n,l)}}(s)$, which perfectly diffuse ${\mathbf{W}}^{(n,l)}$. We get a criterion of perfect diffusion of ${\mathbf{W}}^{(n,l)}$ for any $l\in \mathbb{N}$. We show the connection between permutations perfectly diffusing ${\mathbf{W}}$, APN-permutations, AB-permutations, and differentially $2r$-uniform permutations, $r \ge 1$.
Mots-clés :
perfect diffusion, imprimitive group, APN-permutation, AB-permutation, polytopic technique.
Keywords: wreath product, differentially $d$-uniform permutation, differential technique
Keywords: wreath product, differentially $d$-uniform permutation, differential technique
@article{PDMA_2024_17_a3,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {16--19},
publisher = {mathdoc},
number = {17},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/}
}
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2024 SP - 16 EP - 19 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/ LA - ru ID - PDMA_2024_17_a3 ER -
B. A. Pogorelov; M. A. Pudovkina. On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 16-19. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/