On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 16-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V_n (2^m)$ be an $n$-dimensional vector space over $\mathbb{F}_{2^{m}}$ and ${\overline{V}}_n^l(2^m)$ consists of all pairwise different elements from the Cartesian product $V_n^l(2^m)$, $l,n,m \in \mathbb{N}$, $n,l \geq 2$. We consider permutations from the symmetrical group $S(V_n (2^m))$ acting coordinate-wise on vectors from $V_n^l(2^m)$, and partitions of ${\overline{V}}_n^l(2^m)$, which are generalizations of classical differential partitions ($l = 2$) and are used in high order differential, truncated differential, impossible differential, polytopic and multiple differential techniques. For a partition ${\mathbf{W}}^{(n,l)}$ of ${\overline{V}}_n^l(2^m)$, we study the minimum Hamming distance $\text{d}_{{\mathbf{W}}^{(n,l)}}(s)$ between a permutation $s$ and the set $\mathrm{IG}_{\mathbf{W}}$ consisting of all permutations from $S(V_n (2^m))$ preserving ${\mathbf{W}}^{(n,l)}$. We describe properties of permutations $s$ with the maximum distance $\text{d}_{{\mathbf{W}}^{(n,l)}}(s)$, which perfectly diffuse ${\mathbf{W}}^{(n,l)}$. We get a criterion of perfect diffusion of ${\mathbf{W}}^{(n,l)}$ for any $l\in \mathbb{N}$. We show the connection between permutations perfectly diffusing ${\mathbf{W}}$, APN-permutations, AB-permutations, and differentially $2r$-uniform permutations, $r \ge 1$.
Mots-clés : perfect diffusion, imprimitive group, APN-permutation, AB-permutation, polytopic technique.
Keywords: wreath product, differentially $d$-uniform permutation, differential technique
@article{PDMA_2024_17_a3,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {16--19},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 16
EP  - 19
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/
LA  - ru
ID  - PDMA_2024_17_a3
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 16-19
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/
%G ru
%F PDMA_2024_17_a3
B. A. Pogorelov; M. A. Pudovkina. On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 16-19. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a3/

[1] Pogorelov B. A., Pudovkina M. A., “O rasstoyaniyakh ot podstanovok do imprimitivnykh grupp pri fiksirovannoi sisteme imprimitivnosti”, Diskretnaya matematika, 25:3 (2013), 78–95 | DOI

[2] Pogorelov B. A., Pudovkina M. A., “Multipodstanovki na dekartovom proizvedenii grupp i ikh svoistva”, Matematicheskie voprosy kriptografii, 14:4 (2023), 111–142 | DOI | MR | Zbl

[3] Biham E. and Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 4:1 (1991), 3–72 | DOI | MR | Zbl

[4] Lai X., “Higher order derivatives and differential cryptanalysis”, Communications and Cryptography, 276 (1994), 227–233 | DOI | Zbl

[5] Knudsen L. R., “Truncated and higher order differentials”, LNCS, 1008, 1995, 196–211 | Zbl

[6] Tiessen T., “Polytopic cryptanalysis”, LNCS, 9665, 2016, 214–239 | MR | Zbl

[7] Tiessen T., “From higher-order differentials to polytopic cryptanalysis”, LNCS, 10311, 2017, 544–552 | MR | Zbl

[8] Blondeau C., Gérard B., “Multiple differential cryptanalysis: Theory and practice”, LNCS, 6733, 2011, 35–54 | Zbl

[9] Samajder S., Sarkar P., Multiple Differential Cryptanalysis: A Rigorous Analysis, Cryptology ePrint Archive, Report 2016/405, , 2016 https://eprint.iacr.org/2016/405 | Zbl

[10] Nyberg K., “Differentially uniform mappings for cryptography”, LNCS, 765, 1994, 55–64 | MR | Zbl

[11] Carlet C., “Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions”, Des. Codes Cryptogr., 59:1 (2011), 89–109 | DOI | MR | Zbl