Quantum cryptanalysis of the KB-256 block cipher
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 112-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present the results of a quantum cryptanalysis of the KB-256 block cipher. First of all, we have obtained the complexity of quantum circuit implementation. This quantum circuit is a part of the oracle in Grover's algorithm. As a result, such an attack would require at least 1068 qubits and 188892 quantum gates. Also, in our analysis we have found that the cipher is resistant to attacks based on searching hidden linear structures.
Keywords: quantum cryptanalysis, Grover's search, quantum circuits, hidden linear functions.
@article{PDMA_2024_17_a24,
     author = {M. V. Polyakov and A. M. Koreneva},
     title = {Quantum cryptanalysis of the {KB-256} block cipher},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {112--115},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a24/}
}
TY  - JOUR
AU  - M. V. Polyakov
AU  - A. M. Koreneva
TI  - Quantum cryptanalysis of the KB-256 block cipher
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 112
EP  - 115
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a24/
LA  - ru
ID  - PDMA_2024_17_a24
ER  - 
%0 Journal Article
%A M. V. Polyakov
%A A. M. Koreneva
%T Quantum cryptanalysis of the KB-256 block cipher
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 112-115
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a24/
%G ru
%F PDMA_2024_17_a24
M. V. Polyakov; A. M. Koreneva. Quantum cryptanalysis of the KB-256 block cipher. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 112-115. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a24/

[1] Shor P. W., “Algorithms for quantum computation: discrete logarithms and factoring”, Proc. 35th Ann. Symp. FCS (Santa Fe, USA), 1994, 124–134 | MR

[2] Grover L. K., “A fast quantum mechanical algorithm for database search”, Proc. 28th Ann. ACM Symp. STOC'96 (Philadelphia, Pennsylvania, USA), 1996, 212–219 | MR | Zbl

[3] Simon D. R., “On the power of quantum computation”, SIAM J. Computing, 26:5 (1997), 1474–1483 | DOI | MR | Zbl

[4] Bernstein E., Vazirani U., “Quantum complexity theory”, Proc. 25th Ann. ACM Symp. STOC'93 (San Diego, California, USA), 1993, 11–20 | MR | Zbl

[5] Kaplan M., Leurent G., Leverrier A., Naya-Plasencia M., Breaking Symmetric Cryptosystems using Quantum Period Finding, 2016, arXiv: 1602.05973v3 | MR

[6] Leander G. and May A., “Grover meets Simon — quantumly attacking the FX-construction”, LNCS, 10625, 2017, 161–178 | MR | Zbl

[7] Dong X., Li Z., and Wang X., “Quantum cryptanalysis on some generalized Feistel schemes”, Sci. China Inf. Sci., 62 (2019), 22501 | DOI | MR

[8] Fomichev V. M., Koreneva A. M., “Encryption performance of certain wide block ciphers”, J. Computer Virology Hacking Techniques, 16 (2020), 197–216 | DOI

[9] Koreneva A. M., Fomichev V. M., “Peremeshivayuschie svoistva modifitsirovannykh additivnykh generatorov”, Diskretn. analiz issled. oper., 24:2 (2017), 32–52 | MR | Zbl

[10] Denisenko D. V., “O realizatsii podstanovok v vide kvantovykh skhem bez ispolzovaniya dopolnitelnykh kubitov”, ZhETF, 155:6 (2019), 999–1008 | DOI

[11] Dasu V., Baksi A., Sarkar S., Chattopadhyay A., “LIGHTER-R: Optimized reversible circuit implementation for SBoxes”, 32nd IEEE Intern. System-on-Chip Conference (SOCC) (Singapore), 2019, 260–265

[12] Takahashi Y., Tani S., Kunihiro N., Quantum Addition Circuits and Unbounded Fan-Out, 2009, arXiv: 0910.2530 | MR

[13] Boneh D., Lipton R. J., “Quantum cryptanalysis of hidden linear functions”, LNCS, 963, 1995, 424–437 | MR | Zbl