The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 12-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we explicitly describe all possible characteristic polynomials of the Frobenius endomorphism for ordinary geometrically decomposable Abelian varieties of dimension $3$ over a finite field. These polynomials encode many arithmetic properties of abelian varieties including number of points. More precisely, if $\chi_{A,{q}}(T)$ is the characteristic polynomial of the Frobenius endomorphism on $A$ over $\mathbb{F}_q$, then the number of points on $A$ is equal to $\chi_{A,{q}}(1)$.
Keywords: Abelian threefold, characteristic polynomial, point-counting, finite field.
@article{PDMA_2024_17_a2,
     author = {S. A. Novoselov},
     title = {The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {12--16},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/}
}
TY  - JOUR
AU  - S. A. Novoselov
TI  - The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 12
EP  - 16
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/
LA  - ru
ID  - PDMA_2024_17_a2
ER  - 
%0 Journal Article
%A S. A. Novoselov
%T The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 12-16
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/
%G ru
%F PDMA_2024_17_a2
S. A. Novoselov. The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 12-16. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/