The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 12-16
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we explicitly describe all possible characteristic polynomials of the Frobenius endomorphism for ordinary geometrically decomposable Abelian varieties of dimension $3$ over a finite field. These polynomials encode many arithmetic properties of abelian varieties including number of points. More precisely, if $\chi_{A,{q}}(T)$ is the characteristic polynomial of the Frobenius endomorphism on $A$ over $\mathbb{F}_q$, then the number of points on $A$ is equal to $\chi_{A,{q}}(1)$.
Keywords:
Abelian threefold, characteristic polynomial, point-counting, finite field.
@article{PDMA_2024_17_a2,
author = {S. A. Novoselov},
title = {The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {12--16},
publisher = {mathdoc},
number = {17},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/}
}
TY - JOUR AU - S. A. Novoselov TI - The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2024 SP - 12 EP - 16 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/ LA - ru ID - PDMA_2024_17_a2 ER -
S. A. Novoselov. The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 12-16. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a2/