Some properties of sequences generated by the GEA-1 encryption algorithm
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 75-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider distribution properties and autocorrelation coefficients of sequences generated by the GEA-1 encryption algorithm. We use known estimates of exponential sums from linear recurrence sequences. Let $v=(v(i))_{i=0}^{\infty}$ be the keystream sequence of the GEA-1 algorithm. We prove that the period of sequence $v$ equals to $T(v)=(2^{31}-1)(2^{32}-1)(2^{33}-1)$. We also prove that the number of occurrences of elements $z\in \{0,1\}$ in the vector $(v(0),\ldots, v(l-1))$ satisfies the following relations: $N(z, v)=(T(v)-(-1)^z)/{2}$ and $\left|N_l(z,v)-{l}/{2}\right|1{,}8\cdot 2^{60}$ for all $l\le T(v)$.
Keywords: linear recurrence sequences, filter generators, discrete functions, additive character sums, cross-correlation function.
@article{PDMA_2024_17_a16,
     author = {A. D. Bugrov and O. V. Kamlovskii and V. V. Mizerov},
     title = {Some properties of sequences generated by the {GEA-1} encryption algorithm},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {75--78},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a16/}
}
TY  - JOUR
AU  - A. D. Bugrov
AU  - O. V. Kamlovskii
AU  - V. V. Mizerov
TI  - Some properties of sequences generated by the GEA-1 encryption algorithm
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 75
EP  - 78
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a16/
LA  - ru
ID  - PDMA_2024_17_a16
ER  - 
%0 Journal Article
%A A. D. Bugrov
%A O. V. Kamlovskii
%A V. V. Mizerov
%T Some properties of sequences generated by the GEA-1 encryption algorithm
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 75-78
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a16/
%G ru
%F PDMA_2024_17_a16
A. D. Bugrov; O. V. Kamlovskii; V. V. Mizerov. Some properties of sequences generated by the GEA-1 encryption algorithm. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 75-78. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a16/

[1] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988

[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | Zbl

[3] Korobov N. M., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Doklady AN SSSR, 88:4 (1953), 603–606 | Zbl

[4] Nechaev V. I., “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Trudy matematicheskogo instituta im. V. A. Steklova, 218, 1997, 335–342 | Zbl

[5] Shparlinskii I. E., “O raspredelenii znachenii rekurrentnykh posledovatelnostei”, Problemy peredachi informatsii, 25:2 (1989), 46–53 | MR | Zbl

[6] Sarwate D. V., “An upper bound on the aperiodic autocorrelation function for a maximal-length sequence”, IEEE Trans. Inform. Theory, 30:4 (1984), 685–687 | DOI | MR | Zbl

[7] Niederreiter H., “Distribution properties of feedback shift register sequences”, Problems Control Inform. Theory, 15:1 (1986), 19–34 | MR | Zbl

[8] Kamlovskii O. V., “Kolichestvo poyavlenii elementov v vykhodnykh posledovatelnostyakh filtruyuschikh generatorov”, Prikladnaya diskretnaya matematika, 2013, no. 3(21), 11–25 | Zbl

[9] Beierle C., Derbez P., Leander G., et al., “Cryptanalysis of the GPRS encryption algorithms GEA-1 and GEA-2”, LNCS, 12697, 2021, 155–183 | MR | Zbl

[10] Gill A., Lineinye posledovatelnye mashiny, Mir, M., 1974

[11] Shnaier B., Prikladnaya kriptografiya. Protokoly, algoritmy, iskhodnye teksty na yazyke Si, Triumf, M., 2003

[12] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012

[13] Kamlovskii O. V., “Svoistva raspredelenii strok i stolbtsov dlya matrichnykh lineinykh rekurrentnykh posledovatelnostei pervogo poryadka”, Matematicheskie voprosy kriptografii, 6:4 (2015), 65–76 | DOI | MR | Zbl

[14] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, v. 2, Gelios ARV, M., 2003

[15] Golomb S. W., Gong G., Signal Design for Good Correlation, University Press, Cambridge, 2005 | MR | Zbl