Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2024_17_a14, author = {A. O. Bakharev and K. D. Tsaregorodtsev}, title = {On the security of some algorithms over a group of points of elliptic curves}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {63--70}, publisher = {mathdoc}, number = {17}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a14/} }
TY - JOUR AU - A. O. Bakharev AU - K. D. Tsaregorodtsev TI - On the security of some algorithms over a group of points of elliptic curves JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2024 SP - 63 EP - 70 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a14/ LA - ru ID - PDMA_2024_17_a14 ER -
%0 Journal Article %A A. O. Bakharev %A K. D. Tsaregorodtsev %T On the security of some algorithms over a group of points of elliptic curves %J Prikladnaya Diskretnaya Matematika. Supplement %D 2024 %P 63-70 %N 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a14/ %G ru %F PDMA_2024_17_a14
A. O. Bakharev; K. D. Tsaregorodtsev. On the security of some algorithms over a group of points of elliptic curves. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 63-70. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a14/
[1] Pankratova I. A., Teoretiko-chislovye metody kriptografii, Ucheb. posobie, Tomskii gosudarstvennyi universitet, Tomsk, 2009, 120 pp.
[2] Adleman L., “A subexponential algorithm for the discrete logarithm problem with applications to cryptography”, Proc. 20th Ann. Symp. Found. Comput. Sci. (San Juan, PR, USA), 1979, 55–60
[3] Menezes A., Vanstone S., and Okamoto T., “Reducing elliptic curve logarithms to logarithms in a finite field”, Proc. 23th Ann. ACM Symp. Theory Comput. (New Orleans, Louisiana, USA), 1991, 80–89 | MR
[4] Alekseev E. K., Oshkin I. B., Popov V. O., Smyshlyaev S. V., “O kriptograficheskikh svoistvakh algoritmov, soputstvuyuschikh primeneniyu standartov GOST R 34.11-2012 i GOST R 34.10-2012”, Matem. vopr. kriptogr., 7:1 (2016), 5–38 | DOI | MR | Zbl
[5] Bellare M. and Rogaway P., “Random oracles are practical: A paradigm for designing efficient protocols”, Proc. CCS'93 (Fairfax, Virginia, USA), 1993, 62–73
[6] Fersch M., Kiltz E., and Poettering B., “On the provable security of (EC)DSA signatures”, Proc. CCS'16 (Vienna, Austria), 2016, 1651–1662
[7] Fersch M., The Provable Security of ElGamal-type Signature Schemes, Doctoral dissertation, Ruhr University Bochum, 2018
[8] Nechaev V. I., “K voprosu o slozhnosti determinirovannogo algoritma dlya diskretnogo logarifma”, Matem. zametki, 55:2 (1994), 91–101 | Zbl
[9] Shoup V., “Lower bounds for discrete logarithms and related problems”, LNCS, 1233, 1997, 256–266 | MR
[10] Rekomendatsii po standartizatsii R 50.1.113-2016. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Kriptograficheskie algoritmy, soputstvuyuschie primeneniyu algoritmov elektronnoi tsifrovoi podpisi i funktsii kheshirovaniya, Standartinform, M., 2016
[11] Mezhgosudarstvennyi standart GOST 34.10.2018. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Protsessy formirovaniya i proverki elektronnoi tsifrovoi podpisi, Standartinform, M., 2018
[12] Paterson K. G., Schuldt J., Stam M., Thomson S., “On the joint security of encryption and signature, revisited”, LNCS, 7073, 2011, 161–178 | MR | Zbl
[13] Babueva A. A, Bozhko A. A., and Kyazhin S. N., “Joint security of encryption and signature in RuCMS: Two keys are better, but one is also fine”, Proc. CTCrypt'24, 2024 | Zbl
[14] Sipser M., Introduction to the Theory of Computation, 3rd ed., Cengage Learning, 2012