Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 9-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider all possible binary sequences $X=(X_1,X_2,\ldots,X_{a+b})$ of length $a+b$ consisting of $a$ ones and $b$ zeroes. For each such a sequence, we count the number of pairs of its subsequences of a given length $s$ (so called $s$-chains) that have coinciding values of their elements. Assuming all these sequences $X$ to be equiprobable, we propose exact formula for expectation of number of pairs of coinciding $s$-chains. For any $s$, $s$ and $s$, and any $i$, $1\leq i\leq a+b-s+1$, consider $s$-chain $Y_i=(X_i,\ldots,X_{i+s-1})$ and event $E_{ij}=\{Y_i=Y_j\}$. Let $\eta_{ij}=\mathbb{I}(E_{ij})$ be the indicator of this event, then the number of pairs of coinciding $s$-chains in the sequence $X$ is equal to the random variable $\xi=\textstyle\sum\limits_{1\leq i$. For any $r_a\leq a$ and $r_b\leq b$ denote by $p_{r_a,r_b}=\text{C}_{a+b-r_a-r_b}^{a-r_a}\big/\text{C}_{a+b}^a$ the probability that in sequence $X$ on fixed $r_a$ positions there are ones and on fixed $r_b$ positions are zeroes. For any $k$ such that $1\leq k\leq s-1$, we define the values $n=\lfloor s/k\rfloor$, $m=s-kn$, and the function $$f(k)=\textstyle\sum\limits_{t_1=0}^m\sum\limits_{t_2=0}^{k-m}\text{C}_m^{t_1}\text{C}_{k-m}^{t_2}p_{t_1(n+2)+t_2(n+1),(m-t_1)(n+2)+(k-m-t_2)(n+1)}.$$ Then for the expectation of $\xi$ we obtain the formula $$\mathsf{E}\xi=\frac{\text{C}_{a+b-2s+2}^2}{\text{C}_{a+b}^a}\textstyle\sum\limits_{r=0}^s \text{C}_s^r\text{C}_{a+b-2s}^{a-2r}+\sum\limits_{i=1}^{a+b-2s+2}\sum\limits_{k=1}^{s-1}f(k)+\sum\limits_{i=a+b-2s+3}^{a+b-s}\sum\limits_{k=1}^{a+b-s+1-i}f(k).$$
Keywords: repetitions of $s$-chains, expectation, urn scheme
Mots-clés : exact formula.
@article{PDMA_2024_17_a1,
     author = {V. I. Kruglov},
     title = {Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {9--11},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a1/}
}
TY  - JOUR
AU  - V. I. Kruglov
TI  - Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 9
EP  - 11
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a1/
LA  - ru
ID  - PDMA_2024_17_a1
ER  - 
%0 Journal Article
%A V. I. Kruglov
%T Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 9-11
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a1/
%G ru
%F PDMA_2024_17_a1
V. I. Kruglov. Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 9-11. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a1/

[1] Zubkov A. M., Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., 19:1 (1974), 173–181 | Zbl

[2] Zubkov A. M., Mikhailov V. G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh velichin”, Teoriya veroyatn. i ee primen., 24:2 (1979), 267–279 | MR | Zbl

[3] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:1 (1999), 53–75 | DOI | MR | Zbl

[4] Mikhailov V. G., “Ob asimptoticheskikh svoistvakh raspredeleniya chisla par $H$-svyazannykh tsepochek”, Diskretnaya matematika, 14:3 (2002), 122–129 | DOI | Zbl

[5] Shoitov A. M., “Predelnye raspredeleniya chisla naborov $H$-ekvivalentnykh otrezkov v ravnoveroyatnoi polinomialnoi skheme serii”, Diskretnaya matematika, 14:1 (2002), 82–98 | DOI | MR | Zbl

[6] Mikhailov V. G., Shoitov A. M., “Strukturnaya ekvivalentnost $s$-tsepochek v sluchainykh diskretnykh posledovatelnostyakh”, Diskretnaya matematika, 15:4 (2003), 7–34 | DOI | Zbl