Isomorphisms of $5$-configurations obtained from $2$-digraphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 6-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $5$-configurations defined by their incident matrices over the field $\text{GF}(2)$, which must be nonsingular and contain exactly $5$ units in each row and each column, and the inverse matrix must also have this property. Automorphisms of $5$-configurations are studied. The relationship is shown between the group of automorphisms of an oriented graph without loops and parallel arcs with two input and two output arcs at each vertex and the group of automorphisms of the $5$-configuration obtained from this digraph.
Mots-clés : $k$-configurations, $k$-matrices
Keywords: digraphs, group of automorphisms.
@article{PDMA_2024_17_a0,
     author = {M. M. Komiagin},
     title = {Isomorphisms of $5$-configurations obtained from $2$-digraphs},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {6--9},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a0/}
}
TY  - JOUR
AU  - M. M. Komiagin
TI  - Isomorphisms of $5$-configurations obtained from $2$-digraphs
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 6
EP  - 9
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a0/
LA  - ru
ID  - PDMA_2024_17_a0
ER  - 
%0 Journal Article
%A M. M. Komiagin
%T Isomorphisms of $5$-configurations obtained from $2$-digraphs
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 6-9
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a0/
%G ru
%F PDMA_2024_17_a0
M. M. Komiagin. Isomorphisms of $5$-configurations obtained from $2$-digraphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 6-9. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a0/

[1] Malyshev F. M., Tarakanov V. E., “O $(v,k)$-konfiguratsiyakh”, Matem. sb., 192:2 (2001), 85–108 | DOI | MR | Zbl

[2] Panasenko S. P., Algoritmy shifrovaniya. Spetsialnyi spravochnik, BKhV-Peterburg, SPb., 2009

[3] Kwon D., “New block cipher: ARIA”, LNCS, 2971, 2009, 432–445 | MR

[4] Malyshev F. M., “$k$-Konfiguratsii”, Trudy MIAN, 316, 2022, 248–269 | DOI | Zbl

[5] Malyshev F. M., Frolov A. A., “Klassifikatsiya $(v,3)$-konfiguratsii”, Matem. zametki, 91:5 (2012), 741–749 | DOI | Zbl

[6] Frolov A. A., “Klassifikatsiya nerazlozhimykh abelevykh $(v,5)$-grupp”, Diskretnaya matematika, 20:1 (2008), 94–108 | DOI | Zbl

[7] Trishin A. E., “Primery $(v,k)$-matrits”, Vestnik IKSI (Ser. K), 2003, Spetsialnyi vypusk, posvyaschennyi 100-letiyu akademika A. N. Kolmogorova, 179–185

[8] Komyagin M. M., “Klassifikatsiya $(v,5)$-konfiguratsii dlya $v\leqslant 11$”, Diskretnaya matematika, 36:1 (2024), 46–66 | DOI

[9] Malyshev F. M., “Tri semeistva $5$-konfiguratsii”, Matem. vopr. kriptogr., 4:3 (2013), 83–97 | DOI | Zbl