Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2023_16_a6, author = {A. V. Kutsenko}, title = {Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {26--29}, publisher = {mathdoc}, number = {16}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/} }
TY - JOUR AU - A. V. Kutsenko TI - Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 26 EP - 29 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/ LA - ru ID - PDMA_2023_16_a6 ER -
%0 Journal Article %A A. V. Kutsenko %T Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions %J Prikladnaya Diskretnaya Matematika. Supplement %D 2023 %P 26-29 %N 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/ %G ru %F PDMA_2023_16_a6
A. V. Kutsenko. Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 26-29. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/
[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] Carlet C., Danielsen L. E., Parker M. G., and Solé P., “Self-dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl
[3] Hou X.-D., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl
[4] Feulner T., Sok L., Solé P., and Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68:1 (2013), 395–406 | DOI | MR | Zbl
[5] Luo G., Cao X., and Mesnager S., “Several new classes of self-dual bent functions derived from involutions”, Cryptogr. Commun., 11:6 (2019), 1261–1273 | DOI | MR | Zbl
[6] Li Y., Kan H., Mesnager S., et al., “Generic constructions of (Boolean and vectorial) bent functions and their consequences”, IEEE Trans. Inform. Theory, 68:4 (2022), 2735–2751 | DOI | MR | Zbl
[7] Su S. and Guo X., “A further study on the construction methods of bent functions and self-dual bent functions based on Rothaus's bent function”, Des. Codes Cryptogr., 91:4 (2023), 1559–1580 | DOI | MR | Zbl
[8] Kutsenko A. V. and Tokareva N. N., “Metrical properties of the set of bent functions in view of duality”, Prikladnaya diskretnaya matematika, 2020, no. 49, 18–34 | MR | Zbl
[9] Canteaut A. and Charpin P., “Decomposing bent functions”, IEEE Trans. Inf. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl
[10] Preneel B., Van Leekwijck W., Van Linden L., et al., “Propagation characteristics of Boolean functions”, LNCS, 473, 1990, 161–173 | MR
[11] Kutsenko A., “Metrical properties of self-dual bent functions”, Des. Codes Cryptogr., 88:1 (2020), 201–222 | DOI | MR | Zbl
[12] Kutsenko A. V., “Svoistva podfunktsii samodualnykh bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2022, no. 15, 26–30