Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 26-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Boolean function in even number of variables $n$ is called a bent function if it has flat Walsh — Hadamard spectrum consisting of numbers $\pm2^{n/2}$. A bent function is called self-dual if it coincides with its dual bent function. Previously the author obtained a sufficient condition for subfunctions in $n-2$ variables of a self-dual bent function in $n$ variables, obtained by fixing the first two variables, to be bent. In this paper, we prove that for quadratic self-dual bent functions this condition is not necessary for $n\geqslant6$. The concept of the Gram matrices of Boolean functions is introduced, the general form of the Gram matrix of a bent function and its dual function are obtained. It is proved that if the Gram matrix of a bent function in $n$ variables is non-invertible, then its subfunctions in $n-2$ variables, obtained by fixing the first two variables, are bent functions. It is also proved that the subfunctions of its dual bent function are also bent functions.
Keywords: self-dual bent function, subfunction, quadratic function
Mots-clés : Gram matrix, 4-decompositions.
@article{PDMA_2023_16_a6,
     author = {A. V. Kutsenko},
     title = {Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {26--29},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 26
EP  - 29
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/
LA  - ru
ID  - PDMA_2023_16_a6
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 26-29
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/
%G ru
%F PDMA_2023_16_a6
A. V. Kutsenko. Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 26-29. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Carlet C., Danielsen L. E., Parker M. G., and Solé P., “Self-dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl

[3] Hou X.-D., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl

[4] Feulner T., Sok L., Solé P., and Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68:1 (2013), 395–406 | DOI | MR | Zbl

[5] Luo G., Cao X., and Mesnager S., “Several new classes of self-dual bent functions derived from involutions”, Cryptogr. Commun., 11:6 (2019), 1261–1273 | DOI | MR | Zbl

[6] Li Y., Kan H., Mesnager S., et al., “Generic constructions of (Boolean and vectorial) bent functions and their consequences”, IEEE Trans. Inform. Theory, 68:4 (2022), 2735–2751 | DOI | MR | Zbl

[7] Su S. and Guo X., “A further study on the construction methods of bent functions and self-dual bent functions based on Rothaus's bent function”, Des. Codes Cryptogr., 91:4 (2023), 1559–1580 | DOI | MR | Zbl

[8] Kutsenko A. V. and Tokareva N. N., “Metrical properties of the set of bent functions in view of duality”, Prikladnaya diskretnaya matematika, 2020, no. 49, 18–34 | MR | Zbl

[9] Canteaut A. and Charpin P., “Decomposing bent functions”, IEEE Trans. Inf. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl

[10] Preneel B., Van Leekwijck W., Van Linden L., et al., “Propagation characteristics of Boolean functions”, LNCS, 473, 1990, 161–173 | MR

[11] Kutsenko A., “Metrical properties of self-dual bent functions”, Des. Codes Cryptogr., 88:1 (2020), 201–222 | DOI | MR | Zbl

[12] Kutsenko A. V., “Svoistva podfunktsii samodualnykh bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2022, no. 15, 26–30