Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 26-29
Voir la notice de l'article provenant de la source Math-Net.Ru
A Boolean function in even number of variables $n$ is called a bent function if it has flat Walsh — Hadamard spectrum consisting of numbers $\pm2^{n/2}$. A bent function is called self-dual if it coincides with its dual bent function. Previously the author obtained a sufficient condition for subfunctions in $n-2$ variables of a self-dual bent function in $n$ variables, obtained by fixing the first two variables, to be bent. In this paper, we prove that for quadratic self-dual bent functions this condition is not necessary for $n\geqslant6$. The concept of the Gram matrices of Boolean functions is introduced, the general form of the Gram matrix of a bent function and its dual function are obtained. It is proved that if the Gram matrix of a bent function in $n$ variables is non-invertible, then its subfunctions in $n-2$ variables, obtained by fixing the first two variables, are bent functions. It is also proved that the subfunctions of its dual bent function are also bent functions.
Keywords:
self-dual bent function, subfunction, quadratic function
Mots-clés : Gram matrix, 4-decompositions.
Mots-clés : Gram matrix, 4-decompositions.
@article{PDMA_2023_16_a6,
author = {A. V. Kutsenko},
title = {Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {26--29},
publisher = {mathdoc},
number = {16},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/}
}
TY - JOUR AU - A. V. Kutsenko TI - Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 26 EP - 29 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/ LA - ru ID - PDMA_2023_16_a6 ER -
%0 Journal Article %A A. V. Kutsenko %T Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions %J Prikladnaya Diskretnaya Matematika. Supplement %D 2023 %P 26-29 %N 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/ %G ru %F PDMA_2023_16_a6
A. V. Kutsenko. Gram matrices of bent functions and properties of subfunctions of quadratic self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 26-29. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a6/