Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2023_16_a4, author = {O. V. Kamlovskii and K. N. Pankov}, title = {Some classes of resilient functions over {Galois} rings and their linear characteristics}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {18--22}, publisher = {mathdoc}, number = {16}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a4/} }
TY - JOUR AU - O. V. Kamlovskii AU - K. N. Pankov TI - Some classes of resilient functions over Galois rings and their linear characteristics JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 18 EP - 22 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a4/ LA - ru ID - PDMA_2023_16_a4 ER -
%0 Journal Article %A O. V. Kamlovskii %A K. N. Pankov %T Some classes of resilient functions over Galois rings and their linear characteristics %J Prikladnaya Diskretnaya Matematika. Supplement %D 2023 %P 18-22 %N 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a4/ %G ru %F PDMA_2023_16_a4
O. V. Kamlovskii; K. N. Pankov. Some classes of resilient functions over Galois rings and their linear characteristics. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 18-22. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a4/
[1] Pankov K. N., “Otsenki moschnosti klassov otobrazhenii, primenyaemykh v protokolakh kvantovogo raspredeleniya klyuchei”, Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 2022, no. 4, 4–18
[2] Camion P., Carlet C., Charpin P., and Sendrier N., “On correlation-immune functions”, LNCS, 576, 1992, 86–100 | MR | Zbl
[3] Dobbertin H., “Construction of bent functions and balanced boolean functions with high nonlinearity”, LNCS, 1008, 1995, 61–74 | Zbl
[4] Xiao G-Z. and Massey J. L., “A spectral characterization on correlation-immune combining functions”, IEEE Trans. Inform. Theory, 1988, no. 3, 569–571 | DOI | MR | Zbl
[5] Kamlovskii O. V., Pankov K. N., “Klassy sbalansirovannykh funktsii nad konechnymi polyami, obladayuschikh malym znacheniem lineinoi kharakteristiki”, Problemy peredachi informatsii, 2022, no. 4, 103–117 | MR
[6] Carlet C., “More correlation-immune and resilient functions over Galois fields and Galois rings”, LNCS, 1233, 1997, 422–433 | MR
[7] Camion P. and Canteaut A., “Correlation-immune and resilient function over finite alphabets and their applications in cryptography”, Des. Codes Cryptogr., 16 (1999), 121–149 | DOI | MR | Zbl
[8] Bugrov A. D., “Kusochno-affinnye podstanovki konechnykh polei”, Prikladnaya diskretnaya matematika, 2015, no. 4(30), 5–23
[9] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 2002, no. 1, 99–113 | DOI | Zbl
[10] Kuzmin A. S., Markov V. T., Nechaev A. A. i dr., “Bent-funktsii i giperbent-funktsii nad polem iz $2^l$ elementov”, Problemy peredachi informatsii, 2008, no. 1, 15–37 | Zbl
[11] Golomb S. W. and Gong G., Signal Design for Good Correlation, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[12] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1989, no. 4, 123–139 | Zbl
[13] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matematicheskii sbornik, 1993, no. 3, 21–56 | Zbl
[14] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988
[15] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matematicheskii sbornik, 2009, no. 4, 31–52 | DOI | MR | Zbl
[16] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012
[17] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 1994, no. 3, 50–60 | MR | Zbl
[18] McFarland R. L., “A family of noncyclic difference sets”, J. Combin. Theory. Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl
[19] Tokareva N. N., “Obobscheniya bent-funktsii. Obzor rabot”, Diskretnyi analiz i issledovanie operatsii, 2010, no. 1, 34–64 | Zbl