Calculation of error-correcting pairs for an algebraic-geometric code
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 136-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Error-correcting pairs are calculated explicitly for an arbitrary algebraic-geometric code and its dual code. Such a pair consists of codes that are necessary for an effective decoding algorithm for a given code. The type of pairs depends on the degrees of divisors with which both the original code and one of the codes from error-correcting pair are constructed. So for the algebraic-geometric code $\mathcal{C}_{\mathscr{L}}(D,G)$ of the length $n$ associated with a functional field $F/\mathbb{F}_q$ of genus $g$ the error-correcting pair with number of errors $t=(n-\deg(G)-g-1)/{2}$ is $(\mathcal{C}_{\mathscr{L}}(D,F), \mathcal{C}_{\mathscr{L}}(D,G+F)^\bot)$ or $(\mathcal{C}_{\mathscr{L}}(D,F)^\bot,\mathcal{C}_{\mathscr{L}}(D,F-G))$. For the dual code $\mathcal{C}_{\mathscr{L}}(D,G)^\bot$ the error-correcting pair with number of errors $t=(\deg(G)-3g+1)/{2}$ is $\mathcal{C}_{\mathscr{L}}(D,F),\mathcal{C}_{\mathscr{L}}(D,G-F))$. Considering each component of pair as MDS-code we obtain additional conditions on degrees of divisors $G$ and $F$. In addition, error-correcting pairs are calculated for subfield subcodes $\mathcal{C}_{\mathscr{L}}(D,G)|_{\mathbb{F}_p}$ and $\mathcal{C}_{\mathscr{L}}(D,G)^\perp|_{\mathbb{F}_p}$ where $\mathbb{F}_p$ is a subfield of $\mathbb{F}_q$. The form of a first component in the pair depends on degrees of divisors $G$ and $F$ and in some cases on genus $g$.
Keywords: function field, algebraic-geometric code, error-correcting pair, subfield subcodes.
@article{PDMA_2023_16_a35,
     author = {E. S. Malygina and A. A. Kuninets},
     title = {Calculation of error-correcting pairs for an algebraic-geometric code},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {136--140},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a35/}
}
TY  - JOUR
AU  - E. S. Malygina
AU  - A. A. Kuninets
TI  - Calculation of error-correcting pairs for an algebraic-geometric code
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 136
EP  - 140
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a35/
LA  - ru
ID  - PDMA_2023_16_a35
ER  - 
%0 Journal Article
%A E. S. Malygina
%A A. A. Kuninets
%T Calculation of error-correcting pairs for an algebraic-geometric code
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 136-140
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a35/
%G ru
%F PDMA_2023_16_a35
E. S. Malygina; A. A. Kuninets. Calculation of error-correcting pairs for an algebraic-geometric code. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 136-140. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a35/

[1] Justesen J., Larsen K., Jensen H., et al., “Construction and decoding of a class of algebraic geometry codes”, IEEE Trans. Inform. Theory, 35:4 (1989), 811–821 | DOI | MR | Zbl

[2] Skorobogatov A. N. and Vlădut S. G., “On the decoding of algebraic-geometric codes”, IEEE Trans. Inform. Theory, 36:5 (1990), 1051–1060 | DOI | MR | Zbl

[3] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 369–381 | DOI | MR | Zbl

[4] Kötter R., “A unified description of an error locating procedure for linear codes”, Proc. Algebraic Combinatorial Coding Theory III (Voneshta Voda, Bulgaria, 1992), 113–117

[5] Couvreur A., Marquez-Corbella I., and Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 63 (2017), 5404–5418 | DOI | MR | Zbl

[6] Stichtenoth H., Algebraic Function Fields and Codes, Springer, Berlin–Heidelberg, 1991 | MR

[7] Pellikaan R., “On the existence of error-correcting pairs”, Statistical Planning and Inference, 1996, no. 51, 229–242 | DOI | MR | Zbl

[8] Marquez-Corbella I. and Pellikaan R., “Error-correcting pairs: a new approach to code-based cryptography”, 20th Conf. Appl. of Computer Algebra, 2014 https://hal.science/hal-01088433