Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2023_16_a33, author = {M. M. Glukhov and K. N. Pankov}, title = {On a class of algebraic geometric codes}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {132--134}, publisher = {mathdoc}, number = {16}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a33/} }
M. M. Glukhov; K. N. Pankov. On a class of algebraic geometric codes. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 132-134. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a33/
[1] McEllice R. J., “Public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44
[2] Niederreiter H., “Knapsack-type cryptosystems and algebraic coding theory”, Problems Control Inform. Theory, 15:2 (1986), 159–166 | MR | Zbl
[3] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida — Mallera”, Diskretnaya matematika, 5:2 (1994), 3–20
[4] Sidelnikov V. M., Shestakov S. O., “O sisteme shifrovaniya, postroennoi na osnove obobschennykh kodov Rida —- Solomona”, Diskretnaya matematika, 4:3 (1992), 57–63 | Zbl
[5] Minder L. and Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl
[6] Stepanov S. A., “O nizhnikh otsenkakh summ kharakterov nad konechnymi polyami”, Diskretnaya matematika, 3:2 (1991), 77–86 | Zbl
[7] Glukhov M. M., “Nizhnie otsenki summ kharakterov ot mnogochlenov nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 136–142 | Zbl
[8] Ozbudak F. and Glukhov M., “Codes on superelliptic curves”, Turkish J. Math., 2:2 (1998), 223–234 | MR | Zbl
[9] Pankov K. N. and Glukhov M. M., “Estimation of the power of algebraic geometric codes designed to construct a post-quantum algorithm for ensuring information security of on-board systems”, 2023 Systems of Signals Generating and Processing in the Field of On-board Communications (Moscow, 2023), 1–5