On a class of algebraic geometric codes
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 132-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we present a family of algebraic geometric codes over GF(256) that lie above the Gilbert — Varshamov bound together with dual codes. The family of these codes can be used to construct a post-quantum algorithm of the classic McEllice type. The following theorem holds for them: Let $E: y^3=(x^{63}-1)/(x^3-1)$ be a curve over the field $F=\text{GF}(256)$, $P_1,\ldots ,P_{720}$ are arbitrary distinct $F$-rational points of this curve, $P_\infty$ is the point at infinity. Then the algebraic geometric codes $C_r(D,G)$ on the curve defined by the divisors $D=P_1+\ldots +P_{720}$ and $G=rP_\infty$ for all integers $r$, $81\le r\le 197$, are $[720,3r-57,720-3r]_{2^8}$-codes, and their cardinality, as well as the cardinality of their dual $[720,777-3r,3r-114]_{2^8}$-codes, satisfies the Gilbert — Varshamov bound.
Keywords: post-quantum cryptography, error-correcting codes, algebraic geometric codes, Gilbert — Varshamov bound.
@article{PDMA_2023_16_a33,
     author = {M. M. Glukhov and K. N. Pankov},
     title = {On a class of algebraic geometric codes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {132--134},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a33/}
}
TY  - JOUR
AU  - M. M. Glukhov
AU  - K. N. Pankov
TI  - On a class of algebraic geometric codes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 132
EP  - 134
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a33/
LA  - ru
ID  - PDMA_2023_16_a33
ER  - 
%0 Journal Article
%A M. M. Glukhov
%A K. N. Pankov
%T On a class of algebraic geometric codes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 132-134
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a33/
%G ru
%F PDMA_2023_16_a33
M. M. Glukhov; K. N. Pankov. On a class of algebraic geometric codes. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 132-134. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a33/

[1] McEllice R. J., “Public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44

[2] Niederreiter H., “Knapsack-type cryptosystems and algebraic coding theory”, Problems Control Inform. Theory, 15:2 (1986), 159–166 | MR | Zbl

[3] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida — Mallera”, Diskretnaya matematika, 5:2 (1994), 3–20

[4] Sidelnikov V. M., Shestakov S. O., “O sisteme shifrovaniya, postroennoi na osnove obobschennykh kodov Rida —- Solomona”, Diskretnaya matematika, 4:3 (1992), 57–63 | Zbl

[5] Minder L. and Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl

[6] Stepanov S. A., “O nizhnikh otsenkakh summ kharakterov nad konechnymi polyami”, Diskretnaya matematika, 3:2 (1991), 77–86 | Zbl

[7] Glukhov M. M., “Nizhnie otsenki summ kharakterov ot mnogochlenov nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 136–142 | Zbl

[8] Ozbudak F. and Glukhov M., “Codes on superelliptic curves”, Turkish J. Math., 2:2 (1998), 223–234 | MR | Zbl

[9] Pankov K. N. and Glukhov M. M., “Estimation of the power of algebraic geometric codes designed to construct a post-quantum algorithm for ensuring information security of on-board systems”, 2023 Systems of Signals Generating and Processing in the Field of On-board Communications (Moscow, 2023), 1–5