On one representation of elements of finite $2$-groups in the form of Boolean vectors
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 129-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a way to represent elements of finite $2$-groups as Boolean vectors. Let $G$ be some finite (Burnside) 2-group and its order is $2^k$. In this case, each element of the group will be represented by a unique Boolean (bit) vector of dimension $k$. To calculate the product of two elements, we use analogues of Hall polynomials but now instead of multiplication and addition over the field $\mathbb{Z}_2$ we use the equivalent Boolean (bitwise) operations “and”, as well as “exclusive or”. Note that operations on bits are much faster on a computer than on integer or string data types. For problems requiring the calculation of a large number of products of group elements the method will dramatically reduce the running time of computer programs.
Mots-clés : $2$-group
Keywords: Boolean vector, Hall polynomials.
@article{PDMA_2023_16_a32,
     author = {A. A. Kuznetsov and A. S. Kuznetsova},
     title = {On one representation of elements of finite $2$-groups in the form of {Boolean} vectors},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {129--131},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a32/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
AU  - A. S. Kuznetsova
TI  - On one representation of elements of finite $2$-groups in the form of Boolean vectors
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 129
EP  - 131
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a32/
LA  - ru
ID  - PDMA_2023_16_a32
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%A A. S. Kuznetsova
%T On one representation of elements of finite $2$-groups in the form of Boolean vectors
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 129-131
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a32/
%G ru
%F PDMA_2023_16_a32
A. A. Kuznetsov; A. S. Kuznetsova. On one representation of elements of finite $2$-groups in the form of Boolean vectors. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 129-131. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a32/

[1] Baumslag G., Fazio N., Nicolosi A. R., et al., “Generalized learning problems and applications to non-commutative cryptography”, LNCS, 6980, 2011, 324–339 | MR | Zbl

[2] Fazio N., Iga K., Nicolosi A. R., et al., “Hardness of learning problems over Burnside groups of exponent 3”, Des. Codes Cryptogr., 75:1 (2015), 59–70 | DOI | MR | Zbl

[3] Kahrobaei D. and Noce M., “Algorithmic problems in Engel groups and cryptographic applications”, Int. J. Group Theory, 9:4 (2020), 231–250 | MR | Zbl

[4] Sims C., Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994, 628 pp. | MR | Zbl

[5] Kuznetsov A. A. Kuznetsova A. S., “Bystroe umnozhenie elementov v konechnykh dvuporozhdennykh gruppakh perioda pyat”, Prikladnaya diskretnaya matematika, 2013, no. 1(19), 110–116 | Zbl