An analogue of the Kronecker~--- Cappelli theorem for systems of non-commutative linear equations generating linear languages
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 124-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the study of systems of noncommutative polynomial equations, which are interpreted as grammars of formal languages. Such systems are solved in the form of formal power series (FPS), which express non-terminal symbols in terms of the terminal symbols of the alphabet and are considered as formal languages. Each FPS is associated with its commutative image, which is obtained under the assumption that all symbols denote commutative variables, real or complex. In this paper, we consider equations that are linear in nonterminal symbols with polynomial coefficients in terminal symbols, which means that these systems generate linear formal languages. As is known, the compatibility of a system of noncommutative polynomial equations is not directly related to the compatibility of its commutative image, and therefore, as an analogue of the Kronecker — Cappelli theorem, it is only possible to obtain a sufficient condition for the inconsistency of a noncommutative system.
Keywords: systems of linear equations, formal power series, commutative image.
Mots-clés : noncommutative variables
@article{PDMA_2023_16_a30,
     author = {O. I. Egorushkin and I. V. Kolbasina and K. V. Safonov},
     title = {An analogue of the {Kronecker~---} {Cappelli} theorem for systems of non-commutative linear equations generating linear languages},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {124--126},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a30/}
}
TY  - JOUR
AU  - O. I. Egorushkin
AU  - I. V. Kolbasina
AU  - K. V. Safonov
TI  - An analogue of the Kronecker~--- Cappelli theorem for systems of non-commutative linear equations generating linear languages
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 124
EP  - 126
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a30/
LA  - ru
ID  - PDMA_2023_16_a30
ER  - 
%0 Journal Article
%A O. I. Egorushkin
%A I. V. Kolbasina
%A K. V. Safonov
%T An analogue of the Kronecker~--- Cappelli theorem for systems of non-commutative linear equations generating linear languages
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 124-126
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a30/
%G ru
%F PDMA_2023_16_a30
O. I. Egorushkin; I. V. Kolbasina; K. V. Safonov. An analogue of the Kronecker~--- Cappelli theorem for systems of non-commutative linear equations generating linear languages. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 124-126. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a30/

[1] Egorushkin O. I., Kolbasina I. V., Safonov K. V., “O sovmestnosti sistem simvolnykh polinomialnykh uravnenii i ikh prilozhenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 119–121

[2] Egorushkin O. I., Kolbasina I. V., and Safonov K. V., “On solvability of systems of symbolic polynomial equations”, Zhurn. SFU. Ser. Matem. i fiz., 9:2 (2016), 166–172 | MR

[3] Glushkov V. M., Tseitlin G. E., Yuschenko E. L., Algebra. Yazyki. Programmirovanie, Naukova dumka, Kiev, 1973 | MR

[4] Salomaa A. and Soitolla M., Automata-Theoretic Aspects of Formal Power Series, Springer Verlag, N.Y., 1978 | MR | Zbl

[5] Semenov A. L., “Algoritmicheskie problemy dlya stepennykh ryadov i kontekstno-svobodnykh grammatik”, Dokl. AN SSSR, 212 (1973), 50–52 | Zbl