Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2023_16_a28, author = {S. Pal}, title = {Efficient matrix multiplication for cryptography with~a companion matrix over $\mathbb{F}_2$}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {114--117}, publisher = {mathdoc}, number = {16}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a28/} }
TY - JOUR AU - S. Pal TI - Efficient matrix multiplication for cryptography with~a companion matrix over $\mathbb{F}_2$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 114 EP - 117 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a28/ LA - ru ID - PDMA_2023_16_a28 ER -
S. Pal. Efficient matrix multiplication for cryptography with~a companion matrix over $\mathbb{F}_2$. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 114-117. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a28/
[1] Mahalanobis A., Are matrices useful in public-key cryptography?, Intern. Math. Forum, 8:39 (2013), 1939–1953 | DOI | MR | Zbl
[2] Herstein I. N., Topics in Algebra, 2nd ed., John Wiley Sons, 2006 | MR
[3] Ghorpade S. R. and Ram S., “Block companion Singer cycles, primitive recursive vector sequences and coprime polynomial pairs over finite fields”, Finite Fields Their Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl