Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2023_16_a22, author = {A. A. Semenov}, title = {The use of backdoors to estimate the hardness of propositional proofs and cryptographic attacks}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {87--95}, publisher = {mathdoc}, number = {16}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a22/} }
TY - JOUR AU - A. A. Semenov TI - The use of backdoors to estimate the hardness of propositional proofs and cryptographic attacks JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 87 EP - 95 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a22/ LA - ru ID - PDMA_2023_16_a22 ER -
A. A. Semenov. The use of backdoors to estimate the hardness of propositional proofs and cryptographic attacks. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 87-95. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a22/
[1] Robinson J. A., “Machine-oriented logic based on resolution principle”, J. ACM, 12:1 (1965), 23–41 | DOI | MR | Zbl
[2] Davis M., Logemann G., and Loveland D., “A machine program for theorem-proving”, Commun. ACM, 5:7 (1962), 394–397 | DOI | MR | Zbl
[3] Marques-Silva J. and Sakallah K., “GRASP: A new search algorithm for satisfiability”, Proc. ICCAD (San Jose, CA, USA, 1996), 220–227
[4] Cook S. and Reckhow R., “The relative efficiency of propositional proof systems”, J. Symbolic Logic, 44:1 (1979), 36–50 | DOI | MR | Zbl
[5] Ben-Sasson E. and Wigderson A., “Short proofs are narrow — resolution made simple”, J. ACM, 48:2 (2001), 149–169 | DOI | MR | Zbl
[6] Bonet M. L., Esteban J. L., Galesi N., and Johannsen J., “Exponential separations between restricted resolution and cutting planes proof systems”, Proc. 39th Ann. Symp. FOCS (Palo Alto, CA, USA, 1998), 638–647
[7] Beame P. and Pitassi T., “Simplified and improved resolution lower bounds”, Proc. 37th Conf. FOCS (Burlington, VT, USA, 1996), 274–282 | MR
[8] Ansotegui C., Bonet M. L., Levy J., and Manya F., “Measuring the hardness of SAT instances”, Proc. AAAI Conf. (Chicago, Illinois, USA, July 13–17, 2008), 222–228
[9] Williams R., Gomes C., and Selman B., “Backdoors to typical case complexity”, Proc. 18th Int. Conf. IJCAI (Acapulco, Mexico, 2003), 1173–1178
[10] Semenov A., Chivilikhin D., Pavlenko A., et al., “Evaluating the hardness of SAT instances using evolutionary algorithms”, Proc. 27th Int. Conf. CP 2021, 47, 1–18 | MR
[11] Semenov A., Zaikin O., Otpuschennikov I., et al., “On cryptographic attacks using backdoors for SAT”, Proc. AAAI (New Orleans, Louisiana, USA, 2018), 6641–6648
[12] Marques-Silva J., Lynce I., and Malik S., “Conflict-driven clause learning SAT solvers”, Handbook of Satisfiability, Second Ed., IOS Press, 2021, 133–182
[13] Molitor P. and Mohnke J., Equivalence Checking of Digital Circuits: Fundamentals, Principles, Methods, Kluwer Academic Publ., 2004 | Zbl
[14] Tseitin G. S., “O slozhnosti vyvoda v ischislenii vyskazyvanii”, Zapiski nauchn. seminarov LOMI, 8, 1968, 234–259 | MR | Zbl
[15] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR
[16] Chivilikhin D., Pavlenko A., and Semenov A., “Decomposing hard SAT instances with metaheuristic optimization”, Intern. J. Artificial Intelligence, 21:2 (2023), 61–92
[17] Goldreich O., Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008 | MR | Zbl
[18] Semenov A., Otpuschennikov I., Gribanova I., et al., “Translation of algorithmic descriptions of discrete functions to SAT with applications to cryptanalysis problems”, Logical Methods in Computer Sci., 16:1 (2020), 29, 1–42 | MR
[19] Chang C. and Lee R., Symbolic Logic and Mechanical Theorem Proving, Elsevier, 1973 | MR