On additive differentials that go through ARX transfromation with high probability
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 70-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider additive differential probabilities of the function $(x \oplus y) \lll r$, where $x, y \in \mathbb{Z}_2^n$ and $1 \leq r n$. They are interesting in the context of differential cryptanalysis of ciphers that use addition modulo $2^n$, bitwise XOR ($\oplus$) and bit rotations ($\lll r$) as basic operations. All differentials up to argument symmetries whose probability exceeds $1/4$ are obtained. The possible values of their probabilities are $1/3 + 4^{2 - i} / 6$ for $i \in \{1, \dots, n\}$, which coincide with the differentials probabilities of the function $x \oplus y$. We describe differentials with each of these probabilities and calculate the number of them. It is proven that the number of all considered differentials is equal to $48n - 68$ for $n \geq 2$.
Mots-clés : ARX, XOR, bit rotations.
Keywords: differential probabilities, modular addition
@article{PDMA_2023_16_a17,
     author = {A. S. Mokrousov and N. A. Kolomeets},
     title = {On additive differentials that go through {ARX} transfromation with high probability},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {70--73},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a17/}
}
TY  - JOUR
AU  - A. S. Mokrousov
AU  - N. A. Kolomeets
TI  - On additive differentials that go through ARX transfromation with high probability
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 70
EP  - 73
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a17/
LA  - ru
ID  - PDMA_2023_16_a17
ER  - 
%0 Journal Article
%A A. S. Mokrousov
%A N. A. Kolomeets
%T On additive differentials that go through ARX transfromation with high probability
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 70-73
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a17/
%G ru
%F PDMA_2023_16_a17
A. S. Mokrousov; N. A. Kolomeets. On additive differentials that go through ARX transfromation with high probability. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 70-73. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a17/

[1] Shimizu A. and Miyaguch S., “Fast data encipherment algorithm FEAL”, LNCS, 304, 1988, 267–278 | Zbl

[2] Beaulieu R., Shors D., Smith J., et al., The SIMON and SPECK Families of Lightweight Block Ciphers, Cryptology Eprint Archive, , 2013 https://eprint.iacr.org/2013/404

[3] Bernstein D. J., Salsa20 Specification, eSTREAM Project Algorithm Description, , 2005 http://www.ecrypt.eu.org/stream/salsa20pf.html

[4] Bernstein D. J., “ChaCha, a variant of Salsa20”, Workshop Record of SASC, 8:1 (2008), 3–5

[5] Biham E. and Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 4:1 (1991), 3–72 | DOI | MR | Zbl

[6] Biryukov A. and Velichkov V., “Automatic search for differential trails in ARX ciphers”, LNCS, 8366, 2014, 227–250 | MR | Zbl

[7] Leurent G., “Analysis of differential attacks in ARX constructions”, LNCS, 7658, 2012, 226–243 | Zbl

[8] Malyshev F. M., “Veroyatnostnye kharakteristiki raznostnykh i lineinykh sootnoshenii dlya neodnorodnoi lineinoi sredy”, Matematicheskie voprosy kriptografii, 10:1 (2019), 41–72 | DOI | Zbl

[9] Malyshev F. M., “Raznostnye kharakteristiki osnovnykh operatsii ARX-shifrov”, Matematicheskie voprosy kriptografii, 11:4 (2020), 97–105 | DOI | Zbl

[10] Lipmaa H. and Moriai S., “Efficient algorithms for computing differential properties of addition”, LNCS, 2355, 2001, 336–350

[11] Mouha N., Velichkov V., De Cannière C., and Preneel B., “The differential analysis of S-functions”, LNCS, 6544, 2010, 36–56 | MR

[12] Mouha N., Kolomeec N., Akhtiamov D., et al., “Maximums of the additive differential probability of Exclusive-Or”, IACR Trans. Symmetric Cryptology, 2021, no. 2, 292–313 | DOI | MR

[13] Velichkov V., Mouha N., De Cannière C., and Preneel B., “The additive differential probability of ARX”, LNCS, 6733, 2011, 342–358 | Zbl

[14] Kolomeec N., Sutormin I., Bykov D., et al., On Additive Differential Probabilities of the Composition of Bitwise Exclusive-OR and a Bit Rotation, 2023, arXiv: 2303.04097

[15] Mokrousov A. S., “Vychislenie raznostnykh kharakteristik dlya slozheniya $k$ chisel po modulyu $2^n$”, Prikladnaya diskretnaya matematika. Prilozhenie, 2022, no. 15, 54–57