Algebraic cryptanalysis of 9 rounds of lightweight block cipher Simon32/64
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lightweight block cipher Simon32/64 from the Simon family is considered. Its full version consists of 32 rounds. Cryptanalysis of the first 8 rounds has already been repeatedly performed via SAT, i.e., by reducing to the Boolean satisfiability problem and applying SAT solvers. However, for 9 rounds this is still a challenging problem for the SAT approach. In the paper, a SAT encoding for cryptanalysis of the first 9 rounds of Simon32/64 is constructed. Three classes of cryptanalysis problems are formed depending on how the plain text is chosen. Provided that 16 out of 64 bits of each secret key are known, all the problems were solved via a parallel SAT solver.
Keywords: lightweight block cipher, Simon family of ciphers, SAT-solver.
Mots-clés : algebraic cryptanalysis
@article{PDMA_2023_16_a16,
     author = {E. A. Maro and O. S. Zaikin},
     title = {Algebraic cryptanalysis of 9 rounds of lightweight block cipher {Simon32/64}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {65--70},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a16/}
}
TY  - JOUR
AU  - E. A. Maro
AU  - O. S. Zaikin
TI  - Algebraic cryptanalysis of 9 rounds of lightweight block cipher Simon32/64
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 65
EP  - 70
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a16/
LA  - ru
ID  - PDMA_2023_16_a16
ER  - 
%0 Journal Article
%A E. A. Maro
%A O. S. Zaikin
%T Algebraic cryptanalysis of 9 rounds of lightweight block cipher Simon32/64
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 65-70
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a16/
%G ru
%F PDMA_2023_16_a16
E. A. Maro; O. S. Zaikin. Algebraic cryptanalysis of 9 rounds of lightweight block cipher Simon32/64. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 65-70. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a16/

[1] ISO/IEC 29167-21:2018. Information technology — Automatic identification and data capture techniques. P. 21: Crypto suite SIMON security services for air interface communications, 2018 https://www.iso.org/standard/70388.html | Zbl

[2] Courtois N., Mourouzis T., Song G., et al., “Combined algebraic and truncated differential cryptanalysis on reduced-round Simon”, Proc. 11th Intern. Conf. SECRYPT (Vienna, Austria, 2014), 399–404

[3] Raddum H., “Algebraic analysis of the Simon block cipher family”, LNCS, 9230, 2015, 157–169 | MR | Zbl

[4] Choo D., Soos M., Chai K. M. A., and Meel K. S., “Bosphorus: Bridging ANF and CNF solvers”, Proc. DATE 2019, 468–473

[5] Yeo S. L., Le D., and Khoo K., “Improved algebraic attacks on lightweight block ciphers”, J. Cryptogr. Eng., 11 (2011), 1–19 | DOI | MR

[6] Beaulieu R., Shors D., Smith J., et al., “The SIMON and SPECK lightweight block ciphers”, Proc. DAC 2015, 175:1–175:6

[7] Kutsenko A. V., Atutova N. D., Zyubina D. A. i dr., “Algebraicheskii kriptoanaliz nizkoresursnykh shifrov Simon i Speck”, Prikladnaya diskretnaya matematika. Prilozhenie, 2021, no. 14, 84–91

[8] Marques-Silva J. P. and Sakallah K. A., “GRASP: a search algorithm for propositional satisfiability”, IEEE Trans. Computers, 48:5 (1999), 506–521 | DOI | MR | Zbl

[9] Biere A. and Fleury M., “Gimsatul, IsaSAT and Kissat entering the SAT Competition 2022”, Proc. SAT Competition 2022 — Solver and Benchmark Descriptions, 10–11

[10] Heule M. J. H., Kullmann O., Wieringa S., and Biere A., “Cube and Conquer: guiding CDCL SAT solvers by lookaheads”, LNCS, 7261, 2012, 50–65

[11] Zaikin O., “Inverting 43-step MD4 via cube-and-conquer”, Proc. IJCAI-ECAI (Vienna, Austria, 2022), 1894–1900

[12] Irkutskii superkompyuternyi tsentr SO RAN, http://hpc.icc.ru