Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2023_16_a15, author = {E. S. Malygina and A. V. Kutsenko and S. A. Novoselov and N. S. Kolesnikov and A. O. Bakharev and I. S. Khilchuk and A. S. Shaporenko and N. N. Tokareva}, title = {Main approaches in post-quantum cryptography: description, a comparative study}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {58--65}, publisher = {mathdoc}, number = {16}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a15/} }
TY - JOUR AU - E. S. Malygina AU - A. V. Kutsenko AU - S. A. Novoselov AU - N. S. Kolesnikov AU - A. O. Bakharev AU - I. S. Khilchuk AU - A. S. Shaporenko AU - N. N. Tokareva TI - Main approaches in post-quantum cryptography: description, a comparative study JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 58 EP - 65 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a15/ LA - ru ID - PDMA_2023_16_a15 ER -
%0 Journal Article %A E. S. Malygina %A A. V. Kutsenko %A S. A. Novoselov %A N. S. Kolesnikov %A A. O. Bakharev %A I. S. Khilchuk %A A. S. Shaporenko %A N. N. Tokareva %T Main approaches in post-quantum cryptography: description, a comparative study %J Prikladnaya Diskretnaya Matematika. Supplement %D 2023 %P 58-65 %N 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a15/ %G ru %F PDMA_2023_16_a15
E. S. Malygina; A. V. Kutsenko; S. A. Novoselov; N. S. Kolesnikov; A. O. Bakharev; I. S. Khilchuk; A. S. Shaporenko; N. N. Tokareva. Main approaches in post-quantum cryptography: description, a comparative study. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 58-65. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a15/
[1] Bernstein D. J., “Introduction to post-quantum cryptography”, Post-Quantum Cryptography, eds. Bernstein D. J., Buchmann J., and Dahmen E., Springer, Berlin–Heidelberg, 2009, 1–14 | MR | Zbl
[2] Chen L., Jordan S., Liu Y.-K., et al., NISTIR 8105: Report on Post-Quantum Cryptography, , 2016 https://csrc.nist.gov/publications/detail/nistir/8105/final
[3] Post-Quantum Cryptography project, , National Institute of Standards and Technology https://csrc.nist.gov/projects/post-quantum-cryptography
[4] Alagic G., Apon D., Cooper D., et al., Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process, US Department of Commerce, NIST, 2022
[5] Ajtai M., “Generating hard instances of lattice problems”, Proc. 28th Ann. ACM Symp. STOC'96, 1996, 99–108 | MR | Zbl
[6] Hoffstein J., Pipher J., and Silverman J. H., “NTRU: A ring-based public key cryptosystem”, LNCS, 1423, 1998, 267–288 | MR | Zbl
[7] Lenstra A. K., Lenstra H. W., and Lovász L., “Factoring polynomials with rational coefficients”, Math. Ann., 261:4 (1982), 515–534 | DOI | MR | Zbl
[8] Gama N., Nguyen P. Q., and Regev O., “Lattice enumeration using extreme pruning”, LNCS, 6110, 2010, 257–278 | MR | Zbl
[9] Chen Y. and Nguyen P. Q., “BKZ 2.0: Better lattice security estimates”, LNCS, 7073, 2011, 1–20 | MR | Zbl
[10] Becker A., Ducas L., Gama G., and Laarhoven T., “New directions in nearest neighbor searching with applications to lattice sieving”, Proc. 27th Ann. ACM-SIAM Symp. on Discrete Algorithms, SIAM, 2016, 10–24 | DOI | MR | Zbl
[11] Herold G., Kirshanova E., and Laarhoven T., “Speed-ups and time-memory trade-offs for tuple lattice sieving”, LNCS, 10769, 2018, 407–436 | MR | Zbl
[12] Malygina E. S., Kutsenko A. V., Novoselov S. A. i dr., “Postkvantovye kriptosistemy: otkrytye voprosy i suschestvuyuschie resheniya. Kriptosistemy na reshetkakh”, Diskretnyi analiz i issledovanie operatsii, 2023 (to appear)
[13] McEliece R. J., “A public key cryptosystem based on algebraic coding theory”, DSN Progress Report, 44 (1978), 114–116
[14] Minder L. and Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl
[15] Berlekamp E., McEliece R., and van Tilborg H., “On the inherent intractability of certain coding problems”, IEEE Trans. Inform. Theory, 24:3 (1978), 384–386 | DOI | MR | Zbl
[16] Misoczki R., Tillich J P., Sendrier N., and Barreto P. S. L. M., “MDPC-McEliece: New McEliece variants from moderate density parity-check codes”, IEEE Intern. Symp. Inform. Theory (Istanbul, Turkey, 2013), 2069–2073
[17] Aguilar-Melchor C., Blazy O., Deneuville J. C., et al., “Efficient encryption from random quasi-cyclic codes”, IEEE Trans. Inform. Theory, 64:5 (2018), 3927–3943 | DOI | MR | Zbl
[18] Malygina E. S., Kutsenko A. V., Novoselov S. A. i dr., “Postkvantovye kriptosistemy: otkrytye voprosy i suschestvuyuschie resheniya. Kriptosistemy na izogeniyakh i kodakh, ispravlyayuschikh oshibki”, Diskretnyi analiz i issledovanie operatsii, 2023 (to appear)
[19] De Feo L., Jao D., and Plût J., Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies, Cryptology Eprint Archive. Paper 2011/506, https://eprint.iacr.org/2011/506 | MR
[20] Castryck W. and Decru T., An Efficient Key Recovery Attack on SIDH (preliminary version), Cryptology Eprint Archive. Paper 2022/975, https://eprint.iacr.org/2022/975 | MR
[21] Castryck W., Lange T., Martindale C., et al., CSIDH: An Efficient Post-Quantum Commutative Group Action, Cryptology Eprint Archive. Paper 2018/383, https://eprint.iacr.org/2018/383 | MR
[22] Chi-Domínguez J.-J. and Rodríguez-Henríquez F., “Optimal strategies for CSIDH”, Adv. Math. Commun., 16:2 (2022), 383–411 | DOI | MR | Zbl