Multipermutations and perfect diffusion of partitions
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 8-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multipermutations are introduced by C.-P. Schnorr and S. Vaudenay as formalization of perfect diffusion in block ciphers. In this paper, we consider an abelian group $X$ and a set $H$ of transformations on $X^2$ introduced by S. Vaudenay. Any bijective transformation from $H$ is a multipermutation. Multipermutations from $H$ are defined by orthomorphisms on $X$. The set $H$ is nonempty iff there exists an orthomorphism on $X$. We consider a set $W$ of distinct cosets of $W_{0}$ in $X$. We describe multipermutations from $H$ such that they perfectly diffuse one of partitions $W^2$ or $X \times W$. As an example, we prove that $8$-bit and $16$-bit transformations of CS-cipher perfectly diffuse such partitions.
Mots-clés : multipermutation, Quasi-Hadamard transformation, perfect diffusion of partitions
Keywords: orthomorphism, CS-cipher.
@article{PDMA_2023_16_a1,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Multipermutations and perfect diffusion of partitions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {8--11},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a1/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Multipermutations and perfect diffusion of partitions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 8
EP  - 11
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a1/
LA  - ru
ID  - PDMA_2023_16_a1
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Multipermutations and perfect diffusion of partitions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 8-11
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a1/
%G ru
%F PDMA_2023_16_a1
B. A. Pogorelov; M. A. Pudovkina. Multipermutations and perfect diffusion of partitions. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 8-11. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a1/

[1] B. A. Pogorelov, V. N. Sachkov (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 94 pp.

[2] Schnorr C.-P. and Vaudenay S., “Black box cryptanalysis of hash networks based on multipermutations”, LNCS, 950, 1995, 47–57 | MR | Zbl

[3] Vaudenay S., “On the need for multipermutations: cryptanalysis of MD4 and SAFER”, LNCS, 1008, 1995, 286–297 | Zbl

[4] Massey J. L., “SAFER K-64: a byte-oriented block-ciphering algorithm”, LNCS, 1267, 1994, 1–17

[5] Lipmaa H., “On differential properties of pseudo-Hadamard transform and related mappings”, LNCS, 2551, 2002, 48–61 | Zbl

[6] Pogorelov B. A., Pudovkina M. A., “Variatsii ortomorfizmov i psevdoadamarovykh preobrazovanii na neabelevoi gruppe”, Prikladnaya diskretnaya matematika. Prilozhenie, 12 (2019), 24–27

[7] Pogorelov B. A., Pudovkina M. A., “Obobschennye kvaziadamarovy preobrazovaniya na konechnykh gruppakh”, Matem. vopr. kriptografii, 13:4 (2022), 97–124 | DOI | MR | Zbl

[8] St Denis T., Fast Pseudo-Hadamard Transforms, Cryptology eprint Archive. Report 2004/010, , 2004 https://eprint.iacr.org/2004/010.pdf

[9] Evans A. B., “Applications of complete mappings and orthomorphisms of finite groups”, Quasigroups and Related Systems, 23 (2015), 5–30 | MR | Zbl

[10] Hall M. and Paige L. J., “Complete mappings of finite groups”, Pacific J. Math., 5 (1955), 541–549 | DOI | MR | Zbl

[11] Pogorelov B. A., Pudovkina M. A., “O rasstoyaniyakh ot podstanovok do imprimitivnykh grupp pri fiksirovannoi sisteme imprimitivnosti”, Diskretnaya matematika, 25:3 (2013), 78–95 | DOI

[12] Stern J. and Vaudenay S., “CS-Cipher”, LNCS, 1372, 1998, 189–204 | Zbl