On decomposition of bent functions in $8$ variables into the sum of two bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 40-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Boolean function in an even number of variables is called bent if it has maximal nonlinearity. We study the well-known hypothesis about the representation of arbitrary Boolean functions in $n$ variables of degree at most $n/2$ as the sum of two bent functions. We prove that bent functions in $8$ variables of degree at most $3$ can be represented as the sum of two bent functions in $8$ variables. It was shown that all quadratic Boolean functions in an even number of variables $n\geqslant 4$ can be represented as the sum of two bent functions of a special form.
Keywords: Boolean functions, bent functions, decomposition into sum of bent functions.
@article{PDMA_2022_15_a9,
     author = {A. S. Shaporenko},
     title = {On decomposition of bent functions in $8$ variables into the sum of two bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {40--42},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a9/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - On decomposition of bent functions in $8$ variables into the sum of two bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 40
EP  - 42
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a9/
LA  - ru
ID  - PDMA_2022_15_a9
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T On decomposition of bent functions in $8$ variables into the sum of two bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 40-42
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a9/
%G ru
%F PDMA_2022_15_a9
A. S. Shaporenko. On decomposition of bent functions in $8$ variables into the sum of two bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 40-42. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a9/

[1] Rothaus O. S., “On “bent” functions”, J. Combinat. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press. Elsevier, 2015 | MR | Zbl

[3] Matsui M., “Linear cryptanalysis method for DES cipher”, LNCS, 765, 1994, 386–397 | Zbl

[4] Adams C., “Constructing symmetric ciphers using the CAST design procedure”, Design, Codes, Cryptogr., 12:3 (1997), 283–316 | DOI | MR | Zbl

[5] Hell M., Johansson T., Maximov A., and Meier W., “A stream cipher proposal: Grain-128”, IEEE Intern. Symp. Inform. Theory, 2006, 1614–1618

[6] Carlet C., “Open questions on nonlinearity and on APN Functions”, LNCS, 9061, 2015, 83–107 | MR | Zbl

[7] Tokareva N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl

[8] Canteaut A. and Charpin P., “Decomposing bent functions”, IEEE Trans. Inform. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl

[9] Hou X. D., “Cubic bent functions”, Discr. Math., 189:1–3 (1998), 149–161 | DOI | MR | Zbl

[10] Qu L. and Li C., “New results on the Boolean functions that can be expressed as the sum of two bent functions”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 99-A:8 (2016), 1584–1590