Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2022_15_a8, author = {I. S. Khilchuk and D. A. Zyubina and N. N. Tokareva}, title = {Correlation-immune functions with optimal algebraic immunity}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {34--40}, publisher = {mathdoc}, number = {15}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a8/} }
TY - JOUR AU - I. S. Khilchuk AU - D. A. Zyubina AU - N. N. Tokareva TI - Correlation-immune functions with optimal algebraic immunity JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 34 EP - 40 IS - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a8/ LA - ru ID - PDMA_2022_15_a8 ER -
I. S. Khilchuk; D. A. Zyubina; N. N. Tokareva. Correlation-immune functions with optimal algebraic immunity. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 34-40. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a8/
[1] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, Fizmatlit, M., 2002, 91–148 | MR
[2] Courtois N. and Meier W., “Algebraic attack on stream ciphers with linear feedback”, LNCS, 2656, 2003, 345–359 | MR | Zbl
[3] Mariot L., and Leporati A., “A genetic algorithm for evolving plateaued cryptographic Boolean functions”, LNCS, 9477, 2015, 33–45 | MR
[4] Sun L. and Fu F.-W., “Constructions of balanced odd-variable rotation symmetric Boolean functions with optimal algebraic immunity and high nonlinearity”, Theor. Comput. Sci., 738 (2018), 13–24 | DOI | MR | Zbl
[5] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2021
[6] Siegenthaler T., “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. Inform. Theory, 30:5 (1984), 776–780 | DOI | MR | Zbl