Properties of subfunctions of self-dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 26-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boolean functions in an even number of variables with flat Walsh — Hadamard spectrum are called bent functions. For every bent function, say $f$, its dual bent function, denoted by $\widetilde{f}$, is uniquely defined. If ${\widetilde{f}=f}$, then $f$ is called self-dual bent, and in the case ${\widetilde{f}=f\oplus 1}$ it is called an anti-self-dual bent. In this paper, we study subfunctions of self-dual bent functions obtained by a fixation of the first and the first two coordinates. We characterize subfunctions in $n-1$ variables considering their Rayleigh quotients. A sufficient condition for all subfunctions in $n-2$ variables to be bent is obtained. We propose new iterative constructions of self-dual bent functions in $n$ variables comprising the usage of bent functions in ${n-4}$ variables. Based on them, a new iterative lower bound on the cardinality of the set of self-dual bent functions is obtained.
Keywords: self-dual bent function, subfunction, near-bent function, Rayleigh quotient of the Sylvester Hadamard matrix.
@article{PDMA_2022_15_a6,
     author = {A. V. Kutsenko},
     title = {Properties of subfunctions of self-dual bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {26--30},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a6/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - Properties of subfunctions of self-dual bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 26
EP  - 30
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a6/
LA  - ru
ID  - PDMA_2022_15_a6
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T Properties of subfunctions of self-dual bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 26-30
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a6/
%G ru
%F PDMA_2022_15_a6
A. V. Kutsenko. Properties of subfunctions of self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 26-30. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a6/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Carlet C., Danielsen L. E., Parker M. G., and Solé P., “Self-dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl

[3] Hou X.-D., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl

[4] Feulner T., Sok L., Solé P., and Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68:1 (2013), 395–406 | DOI | MR | Zbl

[5] Luo G., Cao X., and Mesnager S., “Several new classes of self-dual bent functions derived from involutions”, Cryptogr. Commun., 11:6 (2019), 1261–1273 | DOI | MR | Zbl

[6] Li Y., Kan H., Mesnager S., et al., “Generic constructions of (Boolean and vectorial) bent functions and their consequences”, IEEE Trans. Inform. Theory, 68:4 (2022), 2735–2751 | DOI | MR | Zbl

[7] Wolfmann A., “Special bent and near-bent functions”, Adv. Math. Commun., 8:1 (2014), 21–33 | DOI | MR | Zbl

[8] Danielsen L. E., Parker M. G., and Solé P., “The Rayleigh quotient of bent functions”, LNCS, 5921, 2009, 418–432 | MR | Zbl

[9] Canteaut A. and Charpin P., “Decomposing bent functions”, IEEE Trans. Inf. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl

[10] Preneel B., Van Leekwijck W., Van Linden L., et al., “Propagation characteristics of Boolean functions”, LNCS, 473, 1990, 161–173 | MR

[11] Kutsenko A., “Metrical properties of self-dual bent functions”, Des. Codes Cryptogr., 88:1 (2020), 201–222 | DOI | MR | Zbl