Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of bent functions at a certain distance from a given bent function is investigated. The criterion that the function obtained from the bent function $f$ by adding an indicator of an affine subspace of dimension $n$ is a bent function is proven, where $f$ belongs to the Maiorana — McFarland class $\mathcal{M}_{2n}$. It is shown that the lower bound $2^{2n+1} -2^n$ for the number of bent functions at the minimum distance from a bent function from the class $\mathcal{M}_{2n}$ is attained for prime $n \geq 5$. Bent functions are found for which the lower bound is attainable. It is shown that this lower bound is not attained for bent functions from the class $\mathcal{M}_{2n}$, where the permutation is not an APN function. For some distances, in particular $2^{2n-1}$, lower bounds for the number of bent functions in the class $\mathcal{M}_{2n}$ at these distances from bent functions in the class $\mathcal{C}$ are obtained.
Keywords: bent functions, boolean functions, Maiorana — McFarland class, lower bounds.
Mots-clés : minimum distance
@article{PDMA_2022_15_a5,
     author = {D. A. Bykov},
     title = {Lower bound for the number of bent functions at the minimum distance from {Majorana~---} {McFarland} bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {22--25},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/}
}
TY  - JOUR
AU  - D. A. Bykov
TI  - Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 22
EP  - 25
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/
LA  - ru
ID  - PDMA_2022_15_a5
ER  - 
%0 Journal Article
%A D. A. Bykov
%T Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 22-25
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/
%G ru
%F PDMA_2022_15_a5
D. A. Bykov. Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 22-25. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/

[1] Rothaus O., “On bent functions”, J. Comb. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Carlet S., “Two new classes of bent functions”, LNCS, 765, 1993, 77–101 | MR

[3] Zhang F., Cepak N., Pasalic E., and Wei Y., “Further analysis of bent functions from $\mathcal{C}$ and $\mathcal{D}$ which are provably outside or inside $\mathcal{M}^{\#}$”, Discr. Appl. Math., 285 (2020), 458–472 | DOI | MR | Zbl

[4] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4(6), 5–20 | Zbl

[5] Kolomeec N., “The graph of minimal distances of bent functions and its properties”, Des. Codes Cryptogr., 85 (2017), 395–410 | DOI | MR | Zbl

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004

[7] Canteaut A., Daum M., Dobbertin H., and Leander G., “Finding nonnormal bent functions”, Discr. Appl. Math., 154:2 (2006), 202–218 | DOI | MR | Zbl

[8] Leander G. and McGuire G., “Construction of bent functions from near-bent functions”, J. Comb. Theory. Ser. A, 116:4 (2009), 960–970 | DOI | MR | Zbl

[9] Kolomeets N. A., “Perechislenie bent-funktsii na minimalnom rasstoyanii ot kvadratichnoi bent-funktsii”, Diskretn. analiz i issled. oper., 19:1 (2012), 41–58 | MR | Zbl

[10] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3(25), 28–39 | Zbl