Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 22-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The construction of bent functions at a certain distance from a given bent function is investigated. The criterion that the function obtained from the bent function $f$ by adding an indicator of an affine subspace of dimension $n$ is a bent function is proven, where $f$ belongs to the Maiorana — McFarland class $\mathcal{M}_{2n}$. It is shown that the lower bound $2^{2n+1} -2^n$ for the number of bent functions at the minimum distance from a bent function from the class $\mathcal{M}_{2n}$ is attained for prime $n \geq 5$. Bent functions are found for which the lower bound is attainable. It is shown that this lower bound is not attained for bent functions from the class $\mathcal{M}_{2n}$, where the permutation is not an APN function. For some distances, in particular $2^{2n-1}$, lower bounds for the number of bent functions in the class $\mathcal{M}_{2n}$ at these distances from bent functions in the class $\mathcal{C}$ are obtained.
Keywords:
bent functions, boolean functions, Maiorana — McFarland class, lower bounds.
Mots-clés : minimum distance
Mots-clés : minimum distance
@article{PDMA_2022_15_a5,
author = {D. A. Bykov},
title = {Lower bound for the number of bent functions at the minimum distance from {Majorana~---} {McFarland} bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {22--25},
publisher = {mathdoc},
number = {15},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/}
}
TY - JOUR AU - D. A. Bykov TI - Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 22 EP - 25 IS - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/ LA - ru ID - PDMA_2022_15_a5 ER -
%0 Journal Article %A D. A. Bykov %T Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions %J Prikladnaya Diskretnaya Matematika. Supplement %D 2022 %P 22-25 %N 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/ %G ru %F PDMA_2022_15_a5
D. A. Bykov. Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 22-25. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a5/