@article{PDMA_2022_15_a27,
author = {B. A. Terebin and M. B. Abrosimov},
title = {One family of optimal graphs with prescribed connectivities},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {116--119},
year = {2022},
number = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a27/}
}
B. A. Terebin; M. B. Abrosimov. One family of optimal graphs with prescribed connectivities. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 116-119. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a27/
[1] Whitney H., “Congruent graphs and the connectivity of graphs”, Amer. J. Math., 54:1 (1932), 150–168 | DOI | MR
[2] Harary F., “The maximum connectivity of a graph”, Proc. NAS USA, 48 (1962), 1142–1146 | DOI | MR | Zbl
[3] Chartrand G. and Harary F., “Graphs with prescribed connectivities”, Theory of Graphs, Academic Press, N.Y., 1968, 61–63 | MR
[4] Steiglitz K., Weiner P., and Kleitman D., “The design of minimum-cost survivable networks”, IEEE Trans. Circuit Theory, 16:4 (1969), 455–460 | DOI | MR
[5] Jafarpour M., Shekaramiz M., Javan A., and Moeini A., “Building graphs with maximum connectivity”, Proc. IETS, 2020, 1–5
[6] Kharari F., Teoriya grafov, Mir, M., 1973
[7] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR
[8] Terebin B. A., Abrosimov M. B., “Ob optimalnosti realizatsii grafov s zadannymi merami svyaznosti”, Prikladnaya diskretnaya matematika. Prilozhenie, 2020, no. 13, 103–105
[9] Terebin B. A., Abrosimov M. B., “O minimalnom chisle reber v realizatsiyakh grafov s zadannymi merami svyaznosti”, Kompyuternye nauki i informatsionnye tekhnologii, Materialy Mezhdunar. nauch. konf., 2021, 159–161