Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2022_15_a25, author = {A. A. Lobov and M. B. Abrosimov}, title = {About the uniqueness of the minimal $1$-edge extension of a hypercube}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {110--112}, publisher = {mathdoc}, number = {15}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a25/} }
TY - JOUR AU - A. A. Lobov AU - M. B. Abrosimov TI - About the uniqueness of the minimal $1$-edge extension of a hypercube JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 110 EP - 112 IS - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a25/ LA - ru ID - PDMA_2022_15_a25 ER -
A. A. Lobov; M. B. Abrosimov. About the uniqueness of the minimal $1$-edge extension of a hypercube. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 110-112. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a25/
[1] Padua D. A., Encyclopedia of Parallel Computing, Springer, N.Y., 2011 | Zbl
[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[3] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C.25:9 (1976), 875–884 | DOI | MR
[4] Harary F. and Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[5] Lobov A. A., Abrosimov M. B., “O vershinnom 1-rasshirenii giperkuba”, Kompyuternye nauki i informatsionnye tekhnologii, Materialy Mezhdunar. nauch. konf., Izdat. tsentr «Nauka», Saratov, 2018, 249–251
[6] Lobov A. A., Abrosimov M. B., “O minimalnom rebernom 1-rasshirenii giperkuba”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 109–111
[7] Harary F., Hayes J. P., and Wu H.-J., “A survey of the theory of hypercube graphs”, Computers Math. with Appl., 15:4 (1988), 277–289 | DOI | MR | Zbl
[8] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | MR | Zbl