A series of formulas for Bhattacharya parameters in the theory of polar codes
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 108-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the theory of polar codes, the Bhattacharya parameters are used to determine the positions of frozen and information bits. The parameters characterize the polarization rate of the channels $W_N^{(i)}$ constructed in a special way from the original channel $W$, here $1 \leqslant i \leqslant N$, $N=2^n$, and $n=1,2, \ldots$ is the length of the code. It is assumed that the $i$-th bit of a message is transmitted over the channel $W_N^{(i)}$, and the Bhattacharya parameter $Z(W_N^{(i)})$ can be interpreted as the noise level of $W_N^{(i)}$. $W$ is a model of a physical transmission channel. If $W$ is a classical binary memoryless symmetric channel, the currently known formulas for the Bhattacharya parameters contain $2^N=2^{2^n}$ terms. We have obtained the formulas for the series of channels $W_N^{(N-2^k+1)}$, $k=0,1, \ldots, n-1$, that contain $2^{(n-k+1)2^k}$ terms. Some assumptions are also given for further simplification of the obtained formulas.
Mots-clés : polar code
Keywords: Bhattacharya parameter.
@article{PDMA_2022_15_a24,
     author = {S. G. Kolesnikov and V. M. Leontiev},
     title = {A series of formulas for {Bhattacharya} parameters in the theory of polar codes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {108--109},
     year = {2022},
     number = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a24/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
AU  - V. M. Leontiev
TI  - A series of formulas for Bhattacharya parameters in the theory of polar codes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 108
EP  - 109
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a24/
LA  - ru
ID  - PDMA_2022_15_a24
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%A V. M. Leontiev
%T A series of formulas for Bhattacharya parameters in the theory of polar codes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 108-109
%N 15
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a24/
%G ru
%F PDMA_2022_15_a24
S. G. Kolesnikov; V. M. Leontiev. A series of formulas for Bhattacharya parameters in the theory of polar codes. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 108-109. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a24/

[1] Arikan E., Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, 2009, arXiv: 0807.3917 | MR

[2] Arikan E., “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels”, IEEE Trans. Inform. Theory, 55:7 (2009), 3051–3073 | DOI | MR | Zbl