The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 105-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite dynamic systems $(\Gamma_G, \alpha)$ is considered, the states of which are all possible orientations of a given graph $G$, and the evolutionary function $\alpha$ transforms a given state $\overrightarrow{G}$ by reversing all arcs in $\overrightarrow{G}$ that enter into sinks, and there are no other differences between the given $\overrightarrow{G}$ and the next $\alpha(\overrightarrow{G})$ states. We characterize the systems in which all states are accessible and in which there are inaccessible states. Namely, in a finite dynamic system $(\Gamma_G,\alpha)$ all states are accessible if and only if the (connected) components in the graph $G$ are complete graphs with $n$ vertices for $1\leq n\leq3$ and only they. Otherwise, the system under consideration has inaccessible states. The number of graphs forming systems with all accessible states is counted. Namely, the number of graphs $G$ with $n$ vertices that form finite dynamic systems $(\Gamma_G,\alpha)$, all states of which are accessible, is equal to $1+\left\lfloor{n}/{2}\right\rfloor+\left\lfloor{n}/{3}\right\rfloor+\sum\limits_{i=1}^{\left\lfloor (n-3)/{2}\right\rfloor}\left\lfloor(n-2i)/{3}\right\rfloor$. The table is given with the number of graphs with the number of vertices from 1 to 12, forming systems with all accessible states and with inaccessible states.
Keywords: accessible state, directed graph, evolutionary function, finite dynamic system, fault-tolerance, graph, inaccessible state.
@article{PDMA_2022_15_a23,
     author = {A. V. Zharkova},
     title = {The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {105--107},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/}
}
TY  - JOUR
AU  - A. V. Zharkova
TI  - The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 105
EP  - 107
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/
LA  - ru
ID  - PDMA_2022_15_a23
ER  - 
%0 Journal Article
%A A. V. Zharkova
%T The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 105-107
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/
%G ru
%F PDMA_2022_15_a23
A. V. Zharkova. The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 105-107. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/

[1] Barbosa V. C., An Atlas of Edge-Reversal Dynamics, Chapman/CRC, London, 2001 | MR | Zbl

[2] Salii V. N., “Ob odnom klasse konechnykh dinamicheskikh sistem”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2005, no. 14, 23–26

[3] Anashin V. and Khrennikov A., Applied Algebraic Dynamics, Walter De Gruyter, 2009 | MR | Zbl

[4] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997 | MR

[5] Zharkova A. V., “O vetvlenii i neposredstvennykh predshestvennikakh sostoyanii v konechnoi dinamicheskoi sisteme vsekh vozmozhnykh orientatsii grafa”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 76–78 | MR