Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2022_15_a23, author = {A. V. Zharkova}, title = {The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {105--107}, publisher = {mathdoc}, number = {15}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/} }
TY - JOUR AU - A. V. Zharkova TI - The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 105 EP - 107 IS - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/ LA - ru ID - PDMA_2022_15_a23 ER -
%0 Journal Article %A A. V. Zharkova %T The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states %J Prikladnaya Diskretnaya Matematika. Supplement %D 2022 %P 105-107 %N 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/ %G ru %F PDMA_2022_15_a23
A. V. Zharkova. The finite dynamic system of all possible orientations of a given graph with all accessible states and with inaccesible states. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 105-107. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a23/
[1] Barbosa V. C., An Atlas of Edge-Reversal Dynamics, Chapman/CRC, London, 2001 | MR | Zbl
[2] Salii V. N., “Ob odnom klasse konechnykh dinamicheskikh sistem”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2005, no. 14, 23–26
[3] Anashin V. and Khrennikov A., Applied Algebraic Dynamics, Walter De Gruyter, 2009 | MR | Zbl
[4] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997 | MR
[5] Zharkova A. V., “O vetvlenii i neposredstvennykh predshestvennikakh sostoyanii v konechnoi dinamicheskoi sisteme vsekh vozmozhnykh orientatsii grafa”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 76–78 | MR