The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 11-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic normality of the number of $r$-fold characters repetitions in a segment of length $n$ of a strictly stationary random sequence with values in a finite set that satisfies the uniformly strong mixing condition. It is shown that if there exists a number $\alpha> 0$ such that the uniformly strong mixing coefficient $\varphi(t)$ decreases as $t^{-6-\alpha}$, then the distance in the uniform metric between the distribution function of the standardized number of repetitions of multiplicity $r$ and the distribution function of the standard normal law decreases at a rate of $O(n^{-\delta})$ for any $\delta \in (0,\alpha (32+4\alpha)^{ -1})$ with increasing of segment length $n$.
Keywords: multiple repetitions, dependent random variables, uniformly strong mixing, normal approximation, convergence rate estimate.
@article{PDMA_2022_15_a2,
     author = {V. G. Mikhailov and N. M. Mezhennaya},
     title = {The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {11--13},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - N. M. Mezhennaya
TI  - The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 11
EP  - 13
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/
LA  - ru
ID  - PDMA_2022_15_a2
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A N. M. Mezhennaya
%T The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 11-13
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/
%G ru
%F PDMA_2022_15_a2
V. G. Mikhailov; N. M. Mezhennaya. The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 11-13. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/

[1] Ivanov M. A., Chugunkov I. V., Teoriya, primenenie i otsenka kachestva generatorov psevdosluchainykh posledovatelnostei, KUDITs-OBRAZ, M., 2003, 240 pp.

[2] Rukhin A., Soto J., Nechvatal J., et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST, Apr. 2010 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

[3] Mikhailov V. G., “Predelnaya teorema puassonovskogo tipa dlya chisla par pochti polnostyu sovpavshikh tsepochek”, Teoriya veroyatnostei i ee primeneniya, 53:1 (2008), 59–71

[4] Mikhailov V. G., Shoitov A. M., “O chislakh mnozhestv ekvivalentnykh tsepochek v posledovatelnosti nezavisimykh sluchainykh velichin”, Matematicheskie voprosy kriptografii, 4:1 (2013), 77–86 | MR | Zbl

[5] Shoitov A. M., “Normalnoe priblizhenie v zadache ob ekvivalentnykh tsepochkakh”, Trudy po diskretnoi matematike, 10 (2007), 326–349

[6] Mikhailov V. G., “Otsenki tochnosti puassonovskoi approksimatsii dlya raspredeleniya chisla serii povtorenii dlinnykh tsepochek v tsepi Markova”, Diskretnaya matematika, 27:4 (2015), 67–78 | MR

[7] Mikhailov V. G., Shoitov A. M., “O dlinnykh povtoreniyakh tsepochek v tsepi Markova”, Diskretnaya matematika, 26:3 (2014), 79–89

[8] Mikhailov V. G., Shoitov A. M., “Mnogokratnye povtoreniya dlinnykh tsepochek v tsepi Markova”, Matematicheskie voprosy kriptografii, 6:3 (2015), 117–134 | MR

[9] Mikhailov V. G., Mezhennaya N. M., Volgin A. V., “Ob usloviyakh asimptoticheskoi normalnosti chisla povtorenii v statsionarnoi sluchainoi posledovatelnosti”, Diskretnaya matematika, 33:3 (2021), 64–78