The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 11-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic normality of the number of $r$-fold characters repetitions in a segment of length $n$ of a strictly stationary random sequence with values in a finite set that satisfies the uniformly strong mixing condition. It is shown that if there exists a number $\alpha> 0$ such that the uniformly strong mixing coefficient $\varphi(t)$ decreases as $t^{-6-\alpha}$, then the distance in the uniform metric between the distribution function of the standardized number of repetitions of multiplicity $r$ and the distribution function of the standard normal law decreases at a rate of $O(n^{-\delta})$ for any $\delta \in (0,\alpha (32+4\alpha)^{ -1})$ with increasing of segment length $n$.
Keywords: multiple repetitions, dependent random variables, uniformly strong mixing, normal approximation, convergence rate estimate.
@article{PDMA_2022_15_a2,
     author = {V. G. Mikhailov and N. M. Mezhennaya},
     title = {The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {11--13},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - N. M. Mezhennaya
TI  - The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 11
EP  - 13
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/
LA  - ru
ID  - PDMA_2022_15_a2
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A N. M. Mezhennaya
%T The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 11-13
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/
%G ru
%F PDMA_2022_15_a2
V. G. Mikhailov; N. M. Mezhennaya. The rate of normal approximation for the distribution of the number of multiple repetitions of characters in a stationary random sequence. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 11-13. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a2/