Polynomial grammars generating an infinite set of languages
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 78-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of formal grammars, by which we mean systems of polynomial equations with respect to noncommutative variables, which are solved in the form of formal power series expressing nonterminal alphabet symbols through terminal alphabet symbols. The first component of the solution is a formal language. The definition of a grammar having infinitely many solutions (generating an infinite number of languages) is considered. Such grammars can arise in a situation, where the Jacobian of the commutative image of the grammar is identically equal to zero. It is shown that in the case of the Jacobian, which is identically equal to zero, it is more difficult to describe the set of grammatical solutions than for similar polynomial systems with real or complex variables, since all possible situations can be realized: such a grammar may have infinitely many solutions, any finite number of solutions, or no solutions at all.
Mots-clés : polynomial grammars, noncommutative variables, Jacobian.
Keywords: formal power series, commutative image
@article{PDMA_2022_15_a19,
     author = {O. I. Egorushkin and I. V. Kolbasina and K. V. Safonov},
     title = {Polynomial grammars generating an infinite set of languages},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {78--80},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a19/}
}
TY  - JOUR
AU  - O. I. Egorushkin
AU  - I. V. Kolbasina
AU  - K. V. Safonov
TI  - Polynomial grammars generating an infinite set of languages
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 78
EP  - 80
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a19/
LA  - ru
ID  - PDMA_2022_15_a19
ER  - 
%0 Journal Article
%A O. I. Egorushkin
%A I. V. Kolbasina
%A K. V. Safonov
%T Polynomial grammars generating an infinite set of languages
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 78-80
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a19/
%G ru
%F PDMA_2022_15_a19
O. I. Egorushkin; I. V. Kolbasina; K. V. Safonov. Polynomial grammars generating an infinite set of languages. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 78-80. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a19/

[1] Glushkov V. M., Tseitlin G. E., Yuschenko E. L., Algebra. Yazyki. Programmirovanie, Naukova dumka, Kiev, 1973 | MR

[2] Salomaa A. and Soitolla M., Automata-Theoretic Aspects of Formal Power Series, Springer Verlag, N.Y., 1978 | MR | Zbl

[3] Egorushkin O. I., Kolbasina I. V., Safonov K. V., “O sovmestnosti sistem simvolnykh polinomialnykh uravnenii i ikh prilozhenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 119–121

[4] Egorushkin O. I., Kolbasina I. V., and Safonov K. V., “On solvability of systems of symbolic polynomial equations”, Zhurn. SFU. Ser. Matem. i fiz., 9:2 (2016), 166–172 | MR | Zbl

[5] Semenov A. L., “Algoritmicheskie problemy dlya stepennykh ryadov i kontekstno-svobodnykh grammatik”, Doklady AN SSSR, 1973, no. 212, 50–52 | Zbl