Invariant subspaces of functions affine equivalent to the finite field inversion
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 5-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider affine $\mathbb{F}_{p}$-subspaces of a finite field $\mathbb{F}_{p^n}$, $p$ is prime, such that the function $x^{-1}$ which inverses a field element $x$ (we assume that $0^{-1}$ = 0) maps them to affine subspaces. It is proven that the image of an affine subspace $U$, $|U| > 2$, is an affine subspace as well if and only if $U = q \mathbb{F}_{p^k}$, where $q \in \mathbb{F}^*_{p^n}$ and $k | n$. In other words, these subspaces can be expressed using subfields of $\mathbb{F}_{p^n}$. As a consequence, we propose a sufficent condition providing that a function $A(x^{-1}) + b$ has no invariant affine subspaces $U$ of cardinality $2 |U| p^n$, where $A: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is an invertible $\mathbb{F}_{p}$-linear transformation, $b \in \mathbb{F}^*_{p^n}$. Also, we give examples of functions which have no invariant affine subspaces except for $\mathbb{F}_{p^n}$.
Keywords: finite fields, affine subspaces, invariant subspaces.
Mots-clés : inversion
@article{PDMA_2022_15_a0,
     author = {N. A. Kolomeets and D. A. Bykov},
     title = {Invariant subspaces of functions affine equivalent to the finite field inversion},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {5--8},
     publisher = {mathdoc},
     number = {15},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a0/}
}
TY  - JOUR
AU  - N. A. Kolomeets
AU  - D. A. Bykov
TI  - Invariant subspaces of functions affine equivalent to the finite field inversion
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2022
SP  - 5
EP  - 8
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a0/
LA  - ru
ID  - PDMA_2022_15_a0
ER  - 
%0 Journal Article
%A N. A. Kolomeets
%A D. A. Bykov
%T Invariant subspaces of functions affine equivalent to the finite field inversion
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2022
%P 5-8
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a0/
%G ru
%F PDMA_2022_15_a0
N. A. Kolomeets; D. A. Bykov. Invariant subspaces of functions affine equivalent to the finite field inversion. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 5-8. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a0/

[1] FIPS Publ. 197. Advanced Encryption Standard, , 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] Daemen J. and Rijmen V., The Design of Rijndael: AES — the Advanced Encryption Standard, Springer Verlag, 2002 | MR | Zbl

[3] Caranti A., Volta F., and Sala M., Imprimitive permutations groups generated by the round functions of key-alternating block ciphers and truncated differential cryptanalysis, 2006, arXiv: math/0606022

[4] Caranti A., Volta F., and Sala M., “An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher”, Des. Codes Cryptogr., 52 (2009), 293–301 | DOI | MR | Zbl

[5] Caranti A., Volta F., and Sala M., “On some block ciphers and imprimitive groups”, Appl. Algebra Eng. Commun. Comput., 20 (2009), 339–350 | DOI | MR | Zbl

[6] Leander G., Abdelraheem M. A., AlKhzaimi H., and Zenner E., “A cryptanalysis of PRINTcipher: The invariant subspace attack”, LNCS, 6841, 2011, 206–221 | MR | Zbl

[7] Trifonov D. I., Fomin D. B., “Ob invariantnykh podprostranstvakh v XSL-shifrakh”, Prikladnaya diskretnaya matematika, 2021, no. 54, 58–76 | Zbl

[8] Todo Y., Leander G., and Sasaki Y., “Nonlinear invariant attack: practical attack on full SCREAM, iSCREAM, and Midori64”, ASIACRYPT 2016, LNCS, 10032, 2016, 3–33 | MR | Zbl

[9] Burov D. A., “O suschestvovanii nelineinykh invariantov spetsialnogo vida dlya raundovykh preobrazovanii XSL-algoritmov”, Diskretnaya matematika, 33:2 (2021), 31–45 | MR

[10] Mattarei S., “Inverse-closed additive subgroups of fields”, Israel J. Math., 159 (2007), 343–347 | DOI | MR | Zbl

[11] Goldstein D., Guralnick R., Small L., and Zelmanov E., “Inversion-invariant additive subgroups of division rings”, Pacific J. Math., 227 (2006), 287–294 | DOI | MR | Zbl

[12] Nyberg K., “Differentially uniform mappings for cryptography”, LNCS, 765, 1994, 55–64 | MR | Zbl

[13] Carlet S., “Open questions on nonlinearity and on APN Functions”, LNCS, 9061, 2015, 83–107 | MR | Zbl

[14] Hua L.-K., “Some properties of a sfield”, Proc. NAS USA, 35 (1949), 533–537 | DOI | MR | Zbl