Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 48-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Improved lower and upper bounds for $\left| {K\left({n,m,k} \right)} \right|$ (the number of correlation-immune of order $k$ binary mappings) and $\left| {R\left({m,n,k} \right)} \right|$ (the number of $(n,m,k)$-resilient binary mappings) are obtained. By $M\left( {n,k} \right)$ we denote ${\sum\limits_{s=0}^k {\displaystyle{n \choose s}}}$, and by $T\left( {n,m,k} \right)$ — the expression $\left( {2^m-1} \right)\left(\dfrac{n-k}{2}\displaystyle{n \choose k}+M\left( {n,k} \right)\log _2\sqrt {\dfrac{\pi }{2}}\right) $. If $m\geq 5$ and $k\left( 5+2{{\log }_{2}}n \right)+6m\le n\left( {1}/{3}-\gamma \right)$ for fixed $0\gamma {1}/{3}$, then there is $n_0$ such that, for any $\varepsilon_1,\varepsilon_2$ and $n>n_0$, $$ \left( \frac{{{m^2} - m - 12}}{2} + 17 \right)M\left( {n,k} \right)- {\varepsilon _1} \le \log _2\left| {R\left({n,m,k} \right)} \right|-m2^n+T\left( {n,m,k} \right)\le $$ $$ \le \left( {\left( {16m - 47} \right){2^{m - 4}} - m + 3} \right)M\left( {n,k} \right)+{\varepsilon _2}. $$ If $m\geq 5$ and $k\left( 5+2{{\log }_{2}}n \right)+6m\le n\left( {5}/{18}-\gamma \right)$ for fixed $0\gamma {5}/{18}$, then there is $n_0$ such that, for any $\varepsilon_1,\varepsilon_2$ and $n>n_0$, $$ \left( \frac{{{m^2} - m - 12}}{2} + 17 \right)M\left( {n,k} \right)- {\varepsilon _1} \le \log _2\left| {K\left({n,m,k} \right)} \right|-m2^n+m2^{m-1}+T\left( {n,m,k} \right)- $$ $$ -{\left( {\frac{n+1+\log _2 \pi }{2}-k} \right)\left( {2^m-1} \right)}\le \left( {\left( {16m - 47} \right){2^{m - 4}} - m + 3} \right)M\left( {n,k} \right)+{\varepsilon _2}. $$
Keywords: distributed ledger, blockchain, information security, resilient vectorial Boolean function, correlation-immune function.
@article{PDMA_2021_14_a8,
     author = {K. N. Pankov},
     title = {Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune {Boolean} mappings},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {48--51},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a8/}
}
TY  - JOUR
AU  - K. N. Pankov
TI  - Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 48
EP  - 51
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a8/
LA  - ru
ID  - PDMA_2021_14_a8
ER  - 
%0 Journal Article
%A K. N. Pankov
%T Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 48-51
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a8/
%G ru
%F PDMA_2021_14_a8
K. N. Pankov. Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 48-51. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a8/