On some properties of self-dual generalized bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 42-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bent functions of the form $\mathbb{F}_2^n\rightarrow\mathbb{Z}_q$, where $q\geqslant2$ is a positive integer, are known as generalized bent (gbent) functions. A gbent function for which it is possible to define a dual gbent function is called regular. A regular gbent function is said to be self-dual if it coincides with its dual. We obtain the necessary and sufficient conditions for the self-duality of gbent functions from Eliseev — Maiorana — McFarland class. We find the complete Lee distance spectrum between all self-dual functions in this class and obtain that the minimal Lee distance between them is equal to $q\cdot2^{n-3}$. For Boolean case, there are no affine bent functions and self-dual bent functions, while it is known that for generalized case affine bent functions exist, in particular, when $q$ is divisible by $4$. We prove the non-existence of affine self-dual gbent functions for any natural even $q$. A new class of isometries preserving self-duality of a gbent function is presented. Based on this, a refined classification of self-dual gbent functions of the form $\mathbb{F}_2^4\rightarrow\mathbb{Z}_4$ is given.
Keywords: self-dual bent function, generalized bent function, Eliseev — Maiorana — McFarland bent function, Lee distance.
@article{PDMA_2021_14_a6,
     author = {A. V. Kutsenko},
     title = {On some properties of self-dual generalized bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {42--45},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On some properties of self-dual generalized bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 42
EP  - 45
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/
LA  - ru
ID  - PDMA_2021_14_a6
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On some properties of self-dual generalized bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 42-45
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/
%G ru
%F PDMA_2021_14_a6
A. V. Kutsenko. On some properties of self-dual generalized bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 42-45. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/

[1] Janusz G. J., “Parametrization of self-dual codes by orthogonal matrices”, Finite Fields Appl., 13:3 (2007), 450–491 | DOI | MR | Zbl

[2] Schmidt K.-U., “Quaternary constant-amplitude codes for multicode CDMA”, IEEE Trans. Inform. Theory, 55:4 (2009), 1824–1832 | DOI | MR | Zbl

[3] Tokareva N. N., “Obobscheniya bent-funktsii. Obzor rabot”, Diskret. analiz issled. oper., 17:1 (2010), 33–62

[4] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, Elsevier, 2015, 230 pp. | MR | Zbl

[5] Çeşmelioğlu A., Meidl W., Pott A., “On the dual of (non)-weakly regular bent functions and self-dual bent functions”, Adv. Math. Commun., 7:4 (2013), 425–440 | DOI | MR

[6] Hou X.-D., “Classification of $p$-ary self dual quadratic bent functions, $p$ odd”, J. Algebra, 391 (2013), 62–81 | DOI | MR | Zbl

[7] Sok L., Shi M., Solé P., “Classification and construction of quaternary self-dual bent functions”, Cryptogr. Commun., 10:2 (2018), 277–289 | DOI | MR | Zbl

[8] Kutsenko A. V., “The Hamming distance spectrum between self-dual Maiorana — McFarland bent functions”, J. Appl. Industr. Math., 12:1 (2018), 112–125 | DOI | MR | Zbl

[9] Singh B. K., “On cross-correlation spectrum of generalized bent functions in generalized Maiorana — McFarland class”, Inform. Sci. Lett., 2:3 (2013), 139–145 | DOI