On some properties of self-dual generalized bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 42-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Bent functions of the form $\mathbb{F}_2^n\rightarrow\mathbb{Z}_q$, where $q\geqslant2$ is a positive integer, are known as generalized bent (gbent) functions. A gbent function for which it is possible to define a dual gbent function is called regular. A regular gbent function is said to be self-dual if it coincides with its dual. We obtain the necessary and sufficient conditions for the self-duality of gbent functions from Eliseev — Maiorana — McFarland class. We find the complete Lee distance spectrum between all self-dual functions in this class and obtain that the minimal Lee distance between them is equal to $q\cdot2^{n-3}$. For Boolean case, there are no affine bent functions and self-dual bent functions, while it is known that for generalized case affine bent functions exist, in particular, when $q$ is divisible by $4$. We prove the non-existence of affine self-dual gbent functions for any natural even $q$. A new class of isometries preserving self-duality of a gbent function is presented. Based on this, a refined classification of self-dual gbent functions of the form $\mathbb{F}_2^4\rightarrow\mathbb{Z}_4$ is given.
Keywords: self-dual bent function, generalized bent function, Eliseev — Maiorana — McFarland bent function, Lee distance.
@article{PDMA_2021_14_a6,
     author = {A. V. Kutsenko},
     title = {On some properties of self-dual generalized bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {42--45},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On some properties of self-dual generalized bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 42
EP  - 45
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/
LA  - ru
ID  - PDMA_2021_14_a6
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On some properties of self-dual generalized bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 42-45
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/
%G ru
%F PDMA_2021_14_a6
A. V. Kutsenko. On some properties of self-dual generalized bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 42-45. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a6/