Some subgroups of the Burnside group $B_0(2,5)$
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 184-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ B_0(2,5) = \langle x, y \rangle $ be the largest finite two generator Burnside group of exponent five and order $ 5 ^ {34} $. We study a series of subgroups $ H_i = \langle a_i, b_i \rangle $ of the group $ B_0 (2,5) $, where $ a_0 = x $, $ b_0 = y $, $ a_i = a_ { i-1} b_ {i-1} $ and $ b_i = b_ {i-1} a_ {i-1} $ for $ i \in \mathbb {N} $. It has been found that $H_4$ is a commutative group. Therefore, $H_5$ is a cyclyc group and the series of subgroups is broken. The elements $ a_4 = xy ^ 2xyx ^ 2y ^ 2x ^ 2yxy ^ 2x $ and $ b_4 = yx ^ 2yxy ^ 2x ^ 2y ^ 2xyx ^ 2y $ of length $16$ generate an abelian subgroup of order $25$ in $ B_0 (2,5) $. Using computer calculations, we have found that there is no other pair of group words of length less than $16$ that generate a noncyclic abelian subgroup in $ B_0 (2,5) $.
Keywords: non-commutative cryptography, Burnside group.
@article{PDMA_2021_14_a43,
     author = {A. A. Kuznetsov and A. S. Kuznetsova},
     title = {Some subgroups of the {Burnside} group $B_0(2,5)$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {184--186},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a43/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
AU  - A. S. Kuznetsova
TI  - Some subgroups of the Burnside group $B_0(2,5)$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 184
EP  - 186
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a43/
LA  - ru
ID  - PDMA_2021_14_a43
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%A A. S. Kuznetsova
%T Some subgroups of the Burnside group $B_0(2,5)$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 184-186
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a43/
%G ru
%F PDMA_2021_14_a43
A. A. Kuznetsov; A. S. Kuznetsova. Some subgroups of the Burnside group $B_0(2,5)$. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 184-186. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a43/

[1] Shor P., “Algorithms for quantum computation: Discrete logarithms and factoring”, Proc. 35th Ann. Symp. Foundations Comput. Sci., 1994, 124–134 | DOI | MR

[2] Baumslag G., Fazio N., Nicolosi A. R., et al., “Generalized learning problems and applications to non-commutative cryptography”, LNCS, 6980, 2011, 324–339 | MR | Zbl

[3] Fazio N., Iga K., Nicolosi A. R., et al., “Hardness of learning problems over Burnside groups of exponent 3”, Designs, Codes Cryptogr., 75:1 (2015), 59–70 | DOI | MR | Zbl

[4] Kahrobaei D., Noce M., “Algorithmic problems in Engel groups and cryptographic applications”, Intern. J. Group Theory, 9:4 (2020), 231–250 | MR | Zbl

[5] Havas G., Wall G., Wamsley J., “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 1974, no. 10, 459–470 | DOI | MR | Zbl

[6] Kuznetsov A. A., “Ob odnoi podgruppe bernsaidovoi grupy $B_0(2,5)$”, Tr. Instituta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 176–180

[7] Kuznetsov A. A., Kuznetsova A. S., “Bystroe umnozhenie elementov v konechnykh dvuporozhdennykh gruppakh perioda pyat”, Prikladnaya diskretnaya matematika, 2013, no. 1(19), 110–116 | Zbl