On a heuristic approach to constructing bijective vector Boolean functions with given cryptographic properties
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 181-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bijective vector Boolean functions (permutations) are used as nonlinear primitives of many symmetric ciphers. In this paper, we study a generalized construction of $(2m,2m)$-functions using monomial and arbitrary $m$-bit permutations as constituent elements. A heuristic algorithm for obtaining bijective Boolean functions with given nonlinearity and differential uniformity, based on this construction, is proposed. For this, a search is carried out for auxiliary permutations of a lower dimension using the ideas of spectral-linear and spectral-difference methods. The proposed algorithm consists of iterative multiplication of the initial randomly generated $4$-bit permutations by transposition, selecting the best ones in nonlinearity, the differential uniformity, and the corresponding values in the linear and differential spectra among the obtained $8$-bit permutations. The possibility of optimizing the calculation of cryptographic properties at each iteration of the algorithm is investigated; $8$-bit $6$-uniform permutations with nonlinearity $108$ are experimentally obtained.
Keywords: Boolean function, nonlinearity, differential uniformity.
Mots-clés : permutation
@article{PDMA_2021_14_a42,
     author = {M. A. Kovrizhnykh and D. B. Fomin},
     title = {On a heuristic approach to constructing bijective vector {Boolean} functions with given cryptographic properties},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {181--184},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a42/}
}
TY  - JOUR
AU  - M. A. Kovrizhnykh
AU  - D. B. Fomin
TI  - On a heuristic approach to constructing bijective vector Boolean functions with given cryptographic properties
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 181
EP  - 184
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a42/
LA  - ru
ID  - PDMA_2021_14_a42
ER  - 
%0 Journal Article
%A M. A. Kovrizhnykh
%A D. B. Fomin
%T On a heuristic approach to constructing bijective vector Boolean functions with given cryptographic properties
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 181-184
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a42/
%G ru
%F PDMA_2021_14_a42
M. A. Kovrizhnykh; D. B. Fomin. On a heuristic approach to constructing bijective vector Boolean functions with given cryptographic properties. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 181-184. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a42/

[1] Menyachikhin A. V., “Spectral-linear and spectral-differential methods for generating S-boxes having almost optimal cryptographic parameters”, Matem. vopr. kriptogr., 8:2 (2017), 97–116 | MR

[2] Fomin D. B., “O podkhodakh k postroeniyu nizkoresursnykh nelineinykh preobrazovanii”, Obozrenie prikladnoi i promyshlennoi matematiki, 25:4 (2018), 379–381 | MR

[3] Fomin D. B., “Ob algebraicheskoi stepeni i differentsialnoi ravnomernosti podstanovok prostranstva $V_{2m}$, postroennykh s ispolzovaniem $(2m,~m)$-funktsii”, Matem. vopr. kriptogr., 11:4 (2020), 133–149 | MR

[4] Kostrikin A. I., Vvedenie v algebru, uchebnik dlya vuzov, v. I, Osnovy algebry, 3-e izd., Fizmatlit, M., 2004, 272 pp.

[5] O'Connor L., “Properties of linear approximation tables”, LNCS, 1008, 1995, 131–136

[6] Biryukov A., Perrin L., Udovenko A., “Reverse-engineering the s-box of Streebog, Kuznyechik and STRIBOBr1”, LNCS, 9665, 2016, 372–402 | MR | Zbl

[7] Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J., “An APN permutation in dimension six”, 9th Int. Conf. Finite Fields Appl. (2009), Contemp. Math., 518, 2010, 33–42 | DOI | MR | Zbl

[8] Canteaut A., Perrin L., On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting, Cryptology ePrint Archive, Report 2018/713, , 2018 https://eprint.iacr.org/2018/713 | MR | Zbl

[9] Menyachikhin A. V., “The change in linear and differential characteristics of substitution after the multiplication by transposition”, Matem. vopr. kriptogr., 11:2 (2020), 111–123 | MR