Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 168-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to provide a comprehensive security analysis for the parameter selection process, which involves the computational cost of the information set decoding algorithm using the parameters of subfield subcodes of 1-point Hermitian codes.
Keywords: code-based cryptography, McEliece Cryptosystem, Hermitian subfield subcodes, Schur square dimension.
@article{PDMA_2021_14_a39,
     author = {G. P. Nagy and S. El Khalfaoui},
     title = {Towards the security of {McEliece's} cryptosystem based on {Hermitian} subfield subcodes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {168--175},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/}
}
TY  - JOUR
AU  - G. P. Nagy
AU  - S. El Khalfaoui
TI  - Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 168
EP  - 175
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/
LA  - en
ID  - PDMA_2021_14_a39
ER  - 
%0 Journal Article
%A G. P. Nagy
%A S. El Khalfaoui
%T Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 168-175
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/
%G en
%F PDMA_2021_14_a39
G. P. Nagy; S. El Khalfaoui. Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 168-175. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/

[1] Arute F., Arya K., Babbush R, et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574:7779 (2019), 505–510 | DOI

[2] Shor P., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput., 26 (1997), 1484–1509 | DOI | MR | Zbl

[3] McEliece R. J., A Public-Key Cryptosystem Based on Algebraic Coding Theory, DSN Progress Report No 44, Jet Propulsion Lab, 1978, 114–116

[4] Post-Quantum Cryptography, (Updated: March 25, 2020) http://csrc.nist.gov/projects/post-quantum-cryptography

[5] Høholdt T., Pellikaan R., “On the decoding of algebraic-geometric codes”, IEEE Trans. Inform. Theory, 41:6-1, Special Issue on Algebraic Geometry Codes (1995), 1589–1614 | DOI | MR

[6] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 63:8 (2017), 5404–5418 | DOI | MR | Zbl

[7] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory and Applications, Springer, Cham, 2015, 133–140 | DOI | MR | Zbl

[8] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild mceliece over quadratic extensions”, IEEE Trans. Inform. Theory, 63:1 (2016), 404–427 | DOI | MR

[9] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, Intern. Workshop Post-Quantum Cryptogr., Springer, Berlin, 2010, 61–72 | DOI | MR | Zbl

[10] Berger T. P., Loidreau P., “How to mask the structure of codes for a cryptographic use”, Des. Codes Cryptogr., 35:1 (2005), 63–79 | DOI | MR | Zbl

[11] Couvreur A., Gaborit P., Gauthier-Umaña V., et al., “Distinguisher-based attacks on public-key cryptosystems using Reed —- Solomon codes”, Des. Codes Cryptogr., 73:2 (2014), 641–666 | DOI | MR | Zbl

[12] Berlekamp E. R., McEliece R. J., van Tilborg H. C. A., “On the inherent intractability of certain coding problems”, IEEE Trans. Inform. Theory, IT-24:3 (1978), 384–386 | DOI | MR | Zbl

[13] Prange E., “The use of information sets in decoding cyclic codes”, IRE Trans. Inform. Theory, 8:5 (1962), 5–9 | DOI | MR

[14] Canto Torres R., Sendrier N., “Analysis of information set decoding for a sub-linear error weight”, LNCS, 9606, 2016, 144–161 | MR | Zbl

[15] Cascudo I., Cramer R., Mirandola D., Zémor G., “Squares of random linear codes”, IEEE Trans. Inform. Theory, 61:3 (2015), 1159–1173 | DOI | MR | Zbl

[16] Stichtenoth H., Algebraic Function Fields and Codes, Graduate Texts in Math., 254, Springer Verlag, Berlin, 2009, 355 pp. | MR | Zbl

[17] Mumford D., “Varieties defined by quadratic equations”, Questions on Algebraic Varieties, C.I.M.E. Summer Schools, 51, Springer, Berlin–Heidelberg, 2010, 29–100 | MR

[18] Menezes A. J., Blake I. F., Gao X., et al., Applications of Finite Fields, Kluwer Intern. Series Engin. Computer Sci., 199, Kluwer Academic Publishers, Boston, MA, 1993, 218 pp. | MR | Zbl

[19] Xing C. P., Stichtenoth H., “The genus of maximal function fields over finite fields”, Manuscripta Math., 86:2 (1995), 217–224 | DOI | MR | Zbl

[20] El Khalfaoui S., Nagy G. P., “On the dimension of the subfield subcodes of 1-point Hermitian codes”, Adv. Math. Commun., 15:2 (2021), 219–226 | DOI | MR | Zbl

[21] Nagy G. P., Khalfaoui S. E., “Estimating the dimension of the subfield subcodes of Hermitian codes”, Acta Cybernetica, 24:4 (2020), 625–641 | DOI | MR | Zbl

[22] Baldi M., Barenghi A., Chiaraluce F., et al., “A finite regime analysis of information set decoding algorithms”, Algorithms, 12:10 (2019), 209 | DOI | MR