Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a39, author = {G. P. Nagy and S. El Khalfaoui}, title = {Towards the security of {McEliece's} cryptosystem based on {Hermitian} subfield subcodes}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {168--175}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/} }
TY - JOUR AU - G. P. Nagy AU - S. El Khalfaoui TI - Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 168 EP - 175 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/ LA - en ID - PDMA_2021_14_a39 ER -
%0 Journal Article %A G. P. Nagy %A S. El Khalfaoui %T Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes %J Prikladnaya Diskretnaya Matematika. Supplement %D 2021 %P 168-175 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/ %G en %F PDMA_2021_14_a39
G. P. Nagy; S. El Khalfaoui. Towards the security of McEliece's cryptosystem based on Hermitian subfield subcodes. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 168-175. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a39/
[1] Arute F., Arya K., Babbush R, et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574:7779 (2019), 505–510 | DOI
[2] Shor P., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput., 26 (1997), 1484–1509 | DOI | MR | Zbl
[3] McEliece R. J., A Public-Key Cryptosystem Based on Algebraic Coding Theory, DSN Progress Report No 44, Jet Propulsion Lab, 1978, 114–116
[4] Post-Quantum Cryptography, (Updated: March 25, 2020) http://csrc.nist.gov/projects/post-quantum-cryptography
[5] Høholdt T., Pellikaan R., “On the decoding of algebraic-geometric codes”, IEEE Trans. Inform. Theory, 41:6-1, Special Issue on Algebraic Geometry Codes (1995), 1589–1614 | DOI | MR
[6] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 63:8 (2017), 5404–5418 | DOI | MR | Zbl
[7] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory and Applications, Springer, Cham, 2015, 133–140 | DOI | MR | Zbl
[8] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild mceliece over quadratic extensions”, IEEE Trans. Inform. Theory, 63:1 (2016), 404–427 | DOI | MR
[9] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, Intern. Workshop Post-Quantum Cryptogr., Springer, Berlin, 2010, 61–72 | DOI | MR | Zbl
[10] Berger T. P., Loidreau P., “How to mask the structure of codes for a cryptographic use”, Des. Codes Cryptogr., 35:1 (2005), 63–79 | DOI | MR | Zbl
[11] Couvreur A., Gaborit P., Gauthier-Umaña V., et al., “Distinguisher-based attacks on public-key cryptosystems using Reed —- Solomon codes”, Des. Codes Cryptogr., 73:2 (2014), 641–666 | DOI | MR | Zbl
[12] Berlekamp E. R., McEliece R. J., van Tilborg H. C. A., “On the inherent intractability of certain coding problems”, IEEE Trans. Inform. Theory, IT-24:3 (1978), 384–386 | DOI | MR | Zbl
[13] Prange E., “The use of information sets in decoding cyclic codes”, IRE Trans. Inform. Theory, 8:5 (1962), 5–9 | DOI | MR
[14] Canto Torres R., Sendrier N., “Analysis of information set decoding for a sub-linear error weight”, LNCS, 9606, 2016, 144–161 | MR | Zbl
[15] Cascudo I., Cramer R., Mirandola D., Zémor G., “Squares of random linear codes”, IEEE Trans. Inform. Theory, 61:3 (2015), 1159–1173 | DOI | MR | Zbl
[16] Stichtenoth H., Algebraic Function Fields and Codes, Graduate Texts in Math., 254, Springer Verlag, Berlin, 2009, 355 pp. | MR | Zbl
[17] Mumford D., “Varieties defined by quadratic equations”, Questions on Algebraic Varieties, C.I.M.E. Summer Schools, 51, Springer, Berlin–Heidelberg, 2010, 29–100 | MR
[18] Menezes A. J., Blake I. F., Gao X., et al., Applications of Finite Fields, Kluwer Intern. Series Engin. Computer Sci., 199, Kluwer Academic Publishers, Boston, MA, 1993, 218 pp. | MR | Zbl
[19] Xing C. P., Stichtenoth H., “The genus of maximal function fields over finite fields”, Manuscripta Math., 86:2 (1995), 217–224 | DOI | MR | Zbl
[20] El Khalfaoui S., Nagy G. P., “On the dimension of the subfield subcodes of 1-point Hermitian codes”, Adv. Math. Commun., 15:2 (2021), 219–226 | DOI | MR | Zbl
[21] Nagy G. P., Khalfaoui S. E., “Estimating the dimension of the subfield subcodes of Hermitian codes”, Acta Cybernetica, 24:4 (2020), 625–641 | DOI | MR | Zbl
[22] Baldi M., Barenghi A., Chiaraluce F., et al., “A finite regime analysis of information set decoding algorithms”, Algorithms, 12:10 (2019), 209 | DOI | MR