Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a38, author = {P. V. Razumovskii and M. B. Abrosimov}, title = {Schemes for constructing minimal vertex $1$-extensions of complete bicolored graphs}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {165--168}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a38/} }
TY - JOUR AU - P. V. Razumovskii AU - M. B. Abrosimov TI - Schemes for constructing minimal vertex $1$-extensions of complete bicolored graphs JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 165 EP - 168 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a38/ LA - ru ID - PDMA_2021_14_a38 ER -
%0 Journal Article %A P. V. Razumovskii %A M. B. Abrosimov %T Schemes for constructing minimal vertex $1$-extensions of complete bicolored graphs %J Prikladnaya Diskretnaya Matematika. Supplement %D 2021 %P 165-168 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a38/ %G ru %F PDMA_2021_14_a38
P. V. Razumovskii; M. B. Abrosimov. Schemes for constructing minimal vertex $1$-extensions of complete bicolored graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 165-168. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a38/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR
[2] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR
[3] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[4] Razumovskii P. V., Abrosimov M. B., “Postroenie tsvetnykh grafov bez proverki na izomorfizm”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 21:2 (2021), 267–277 | MR | Zbl
[5] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl