Bases over the field $\mathrm{GF(2)}$ generated by the Schur~--- Hadamard operation
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 154-158
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of constructing, describing and applying bases of vector spaces over the field $\mathrm{GF(2)}$ generated by the componentwise product operation up to degree $d$. This problem “Bases” was posed as unsolved in the Olympiad in cryptography NSUCRYPTO. In order to give a way to solve this problem with the Reed — Muller codes, we define the generating family $\mathcal{F}$ as a list of all string $i$ in a true table under condition: the word $x^1_i , \ldots, x^s_i$ has Hamming weight not superior $d$. The values of coefficients of function $f$ are determined recurrently, as in the proof of the theorem on ANF: the coefficient before composition for subset $T$ (cardinality does not exceed $d$) in the set $\{t^1,\ldots,t^s\}$ of arguments is determined as the sum of the values of $f$ and the values of the coefficients for the whole subset $R\subseteq T$. Hence, for all $s,d$, $s \geq d > 1$, there is a basis for which such a family exists, and the construction of the bases is described above. We propose to use general affine group on space $F^s$, $F=\mathrm{GF}(2)$, for obtaining the class of such bases in the condition of the problem.
Mots-clés :
NSUCRYPTO
Keywords: orthomorphisms, vector space basis, Reed — Muller code.
Keywords: orthomorphisms, vector space basis, Reed — Muller code.
@article{PDMA_2021_14_a34,
author = {K. L. Geut and S. S. Titov},
title = {Bases over the field $\mathrm{GF(2)}$ generated by the {Schur~---} {Hadamard} operation},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {154--158},
publisher = {mathdoc},
number = {14},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a34/}
}
TY - JOUR
AU - K. L. Geut
AU - S. S. Titov
TI - Bases over the field $\mathrm{GF(2)}$ generated by the Schur~--- Hadamard operation
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2021
SP - 154
EP - 158
IS - 14
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a34/
LA - ru
ID - PDMA_2021_14_a34
ER -
K. L. Geut; S. S. Titov. Bases over the field $\mathrm{GF(2)}$ generated by the Schur~--- Hadamard operation. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 154-158. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a34/